八年級數(shù)學知識點總結人教版
天才就是勤奮曾經(jīng)有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是小編給大家整理的一些八年級數(shù)學的知識點,希望對大家有所幫助。
八年級數(shù)學知識點
【正方形】
1、正方形的概念
有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質
(1)具有平行四邊形、矩形、菱形的一切性質;
(2)正方形的四個角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;
(4)正方形是軸對稱圖形,有4條對稱軸;
(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定
(1)判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
八年級上冊數(shù)學復習資料
【一次函數(shù)】
20.1一次函數(shù)的概念
1.一般地,解析式形如ykxb(kb是常數(shù),k0)的函數(shù)叫做一次函數(shù);一次函數(shù)的定義域是一切實數(shù)
2.一般地,我們把函數(shù)yc(c為常數(shù))叫做常值函數(shù)
20.2一次函數(shù)的圖像
1.列表、描點、連線
2.一條直線與y軸的交點的縱坐標叫做這條直線在y軸上的截距,簡稱直線的截距
3.一般地,直線ykxb(kb是常數(shù),k0)與y軸的交點坐標是(0,b),直線的截距是b
4.一次函數(shù)ykxb(b≠0)的圖像可以由正比例函數(shù)ykx的圖像平移得到當b>0時,向上平移b個單位,當b<0時,向下平移b的絕對值個單位
5.一元一次不等式與一次函數(shù)之間的關系(看圖)
20.3一次函數(shù)的性質
1.一次函數(shù)ykxb(kb是常數(shù),k?0)具有以下性質:
當k>0時,函數(shù)值y隨自變量x的值增大而增大
當k<0時,函數(shù)值y隨自變量x的值增大而減小
①如圖所示,當k>0,b>0時,直線經(jīng)過第一、二、三象限(直線不經(jīng)過第四象限);②如圖所示,當k>0,b﹥O時,直線經(jīng)過第一、三、四象限(直線不經(jīng)過第二象限);③如圖所示,當k﹤O,b>0時,直線經(jīng)過第一、二、四象限(直線不經(jīng)過第三象限);
④如圖所示,當k﹤O,b﹤O時,直線經(jīng)過第二、三、四象限(直線不經(jīng)過第一象限).20.4一次函數(shù)的應用
1.利用一次函數(shù)及圖像解決實際問題
八年級下冊數(shù)學知識點
一、直角三角形
1、角平分線: 角平分線上的點到這個角的兩邊的距離相等
如圖,∵AD是∠BAC的平分線(或∠1=∠2),
PE⊥AC,PF⊥AB
∴PE=PF
2、線段垂直平分線:線段垂直平分線上的點到這條線段兩個端點
的距離相等 。 如圖,∵CD是線段AB的垂直平分線,
∴PA=PB
3、勾股定理及其逆定理
①勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即 。
求斜邊,則 ;求直角邊,則 或 。
②逆定理 如果三角形的三邊長a、b、c有關系 ,那么這個三角形是直角三角形 。
分別計算“ ”和“ ”,相等就是 ,不相等就不是 。
4、直角三角形全等
方法:SAS、ASA、SSS、AAS、HL。
5、其它性質
①直角三角形斜邊上的中線等于斜邊上的一半
如圖,在 ABC中,∵CD是斜邊AB的中線,∴CD= 。
②在直角三角形中,如果一個銳角等于30°那么它所對的直角
邊等于斜邊的一半
如圖,在 ABC中,∵∠A=30°,∴BC= 。
③在直角三角形中,如果一條直角邊等于斜邊的一半,那么
這條直角邊所對的角等于30°
如圖,在 ABC中,∵BC= ,∴∠A=30°。
④三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
如圖,在⊿ABC中,∵E是AB的中點,F(xiàn)是AC的中點,
∴EF是⊿ABC的中位線 ∴EF‖BC,
二、四邊形
1、多邊形內角和公式:n邊形的內角和=(n-2)?180?
求n邊形的方法:
2、中心對稱:(在直角坐標系中即關于原點對稱,其橫、縱坐標都互為相反數(shù))
成中心對稱的兩個圖形中,對應點得連線經(jīng)過對稱中心,且被對稱中心平分
會畫與某某圖形成中心對稱圖形
會辨別圖形、實物、漢字、英文字母、撲克等是否中心對稱圖形
3、特殊四邊形的判定
①平行四邊形:
方法1兩組對邊分別平行的四邊形是平行四邊形
如圖,∵ AB‖CD,AD‖BC,∴四邊形ABCD是平行四邊形
方法2 兩組對邊分別相等的四邊形是平行四邊形
如圖,∵ AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
方法3兩組對角分別相等的四邊形是平行四邊形
如圖,∵∠A=∠C,∠B=∠D,∴四邊形ABCD是平行四邊形