人教版八年級數(shù)學(xué)知識點
每一門學(xué)科都有自己的學(xué)習(xí)方法,但其實都是千變?nèi)f化的。數(shù)學(xué)作為最燒腦的科目之一,也是需要背的,需要背的,需要練的。下面是小編給大家整理的人教版八年級數(shù)學(xué)知識點,希望對大家有所幫助。
人教版八年級數(shù)學(xué)知識點
分式方程
一、理解定義
1、分式方程:含分式,并且分母中含未知數(shù)的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。
(2)解這個整式方程。
(3)把整式方程的根帶入最簡公分母,看結(jié)果是不是為零,使最簡公分母為零的根是原方程的增根,必須舍去。
(4)寫出原方程的根。
“一化二解三檢驗四總結(jié)”
3、增根:分式方程的增根必須滿足兩個條件:
(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;
(3)解整式方程;(4)驗根;
注:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗根。
分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
5、分式方程解實際問題
步驟:審題—設(shè)未知數(shù)—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。
二、軸對稱圖形:
一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸?;ハ嘀睾系狞c叫做對應(yīng)點。
1、軸對稱:
兩個圖形沿一條直線對折,其中一個圖形能夠與另一個圖形完全重合。這條直線叫做對稱軸?;ハ嘀睾系狞c叫做對應(yīng)點。
2、軸對稱圖形與軸對稱的區(qū)別與聯(lián)系:
(1)區(qū)別。軸對稱圖形討論的是“一個圖形與一條直線的對稱關(guān)系”;軸對稱討論的是“兩個圖形與一條直線的對稱關(guān)系”。
(2)聯(lián)系。把軸對稱圖形中“對稱軸兩旁的部分看作兩個圖形”便是軸對稱;把軸對稱的“兩個圖形看作一個整體”便是軸對稱圖形。
3、軸對稱的性質(zhì):
(1)成軸對稱的兩個圖形全等。
(2)對稱軸與連結(jié)“對應(yīng)點的線段”垂直。
(3)對應(yīng)點到對稱軸的距離相等。
(4)對應(yīng)點的連線互相平行。
三、用坐標(biāo)表示軸對稱
1、點(x,y)關(guān)于x軸對稱的點的坐標(biāo)為(x,-y);
2、點(x,y)關(guān)于y軸對稱的點的坐標(biāo)為(-x,y);
3、點(x,y)關(guān)于原點對稱的點的坐標(biāo)為(-x,-y)。
四、關(guān)于坐標(biāo)軸夾角平分線對稱
點P(x,y)關(guān)于第一、三象限坐標(biāo)軸夾角平分線y=x對稱的點的坐標(biāo)是(y,x)
點P(x,y)關(guān)于第二、四象限坐標(biāo)軸夾角平分線y=-x對稱的點的坐標(biāo)是(-y,-x)
八年級數(shù)學(xué)知識點
1、全等三角形的對應(yīng)邊、對應(yīng)角相等
2、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
3、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
4、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
5、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
7、定理1在角的平分線上的點到這個角的兩邊的距離相等
8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9、角的平分線是到角的兩邊距離相等的所有點的集合
10、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
11、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13、推論3等邊三角形的各角都相等,并且每一個角都等于60°
14、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
15、推論1三個角都相等的三角形是等邊三角形
16、推論2有一個角等于60°的等腰三角形是等邊三角形
17、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
18、直角三角形斜邊上的中線等于斜邊上的一半
19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
22、定理1關(guān)于某條直線對稱的兩個圖形是全等形
23、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
24、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
25、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
26、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
27、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形
八年級數(shù)學(xué)知識點總結(jié)
一、函數(shù):
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
二、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負(fù)數(shù))、實際意義幾方面考慮。
三、函數(shù)的三種表示法及其優(yōu)缺點
(1)關(guān)系式(解析)法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
四、由函數(shù)關(guān)系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值
(2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
五、正比例函數(shù)和一次函數(shù)
1、正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關(guān)系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)中的b=0時(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。
2、一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。
第七章知識點
1、二元一次方程
含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
3、二元一次方程組
含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。
4、二元一次方程組的解
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
5、二元一次方程組的解法
(1)代入(消元)法(2)加減(消元)法
第八章知識點
1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù)、眾數(shù)、中位數(shù)
2、平均數(shù)
(2)加權(quán)平均數(shù):
3、眾數(shù)
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
4、中位數(shù)
一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
初二數(shù)學(xué)學(xué)習(xí)方法十大技巧
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;/至少有兩個。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問題的研究中,,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖像的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。
人教版八年級數(shù)學(xué)知識點相關(guān)文章:
★ 人教版八年級數(shù)學(xué)上冊知識點總結(jié)
★ 八年級數(shù)學(xué)上冊知識點總結(jié)人教版