高中數(shù)學(xué)解題的方法
掌握正確有效的解題方法和解題技巧,不僅可以有助于學(xué)生快速解題,更加可以幫助學(xué)生培養(yǎng)好的數(shù)學(xué)素養(yǎng)。下面是學(xué)習(xí)啦小編為你整理的高中數(shù)學(xué)解題方法,一起來看看吧。
高中數(shù)學(xué)解題方法:立體幾何篇
高考立體幾何試題一般共有4道(選擇、填空題3道, 解答題1道), 共計(jì)總分27分左右,考查的知識(shí)點(diǎn)在20個(gè)以內(nèi)。 選擇填空題考核立幾中的計(jì)算型問題, 而解答題著重考查立幾中的邏輯推理型問題, 當(dāng)然, 二者均應(yīng)以正確的空間想象為前提。 隨著新的課程改革的進(jìn)一步實(shí)施,立體幾何考題正朝著“多一點(diǎn)思考,少一點(diǎn)計(jì)算”的發(fā)展。從歷年的考題變化看, 以簡單幾何體為載體的線面位置關(guān)系的論證,角與距離的探求是常考常新的熱門話題。
知識(shí)整合
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2. 判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3.兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒有公共點(diǎn)”。
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面。
(3)兩個(gè)平面平行的性質(zhì)定理:”如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那
么它們的交線平行“。
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。
(5)夾在兩個(gè)平行平面間的平行線段相等。
(6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過程中均可直接作為性質(zhì)定理引用。
解答題分步驟解決可多得分
1. 合理安排,保持清醒。數(shù)學(xué)考試在下午,建議中午休息半小時(shí)左右,睡不著閉閉眼睛也好,盡量放松。然后帶齊用具,提前半小時(shí)到考場。
2. 通覽全卷,摸透題情。剛拿到試卷,一般較緊張,不宜匆忙作答,應(yīng)從頭到尾通覽全卷,盡量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易后難,也可防止漏做題。
3 .解答題規(guī)范有序。一般來說,試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來源。對(duì)于解答題中的容易題和中檔題,要注意解題的規(guī)范化,關(guān)鍵步驟不能丟,如三種語言(文字語言、符號(hào)語言、圖形語言)的表達(dá)要規(guī)范,邏輯推理要嚴(yán)謹(jǐn),計(jì)算過程要完整,注意算理算法,應(yīng)用題建模與還原過程要清晰,合理安排卷面結(jié)構(gòu)……對(duì)于解答題中的難題,得滿分很困難,可以采用“分段得分”的策略,因?yàn)楦呖?微博)閱卷是“分段評(píng)分”。比如可將難題劃分為一個(gè)個(gè)子問題或一系列的步驟,先解決問題的一部分,能解決到什么程度就解決到什么程度,獲取一定的分?jǐn)?shù)。有些題目有好幾問,前面的小問你解答不出,但后面的小問如果根據(jù)前面的結(jié)論你能夠解答出來,這時(shí)候不妨引用前面的結(jié)論先解答后面的,這樣跳步解答也可以得分。
高中數(shù)學(xué)解題方法:數(shù)列問題篇
數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對(duì)本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會(huì)遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識(shí)和指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和不等式的知識(shí)綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。探索性問題是高考的熱點(diǎn),常在數(shù)列解答題中出現(xiàn)。本章中還蘊(yùn)含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。
近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個(gè)方面;
(1)數(shù)列本身的有關(guān)知識(shí),其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式及求和公式。
(2)數(shù)列與其它知識(shí)的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。
(3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。試題的難度有三個(gè)層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個(gè)別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。
知識(shí)整合
1. 在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項(xiàng)公式、前n項(xiàng)和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實(shí)踐中的指導(dǎo)作用,靈活地運(yùn)用數(shù)列知識(shí)和方法解決數(shù)學(xué)和實(shí)際生活中的有關(guān)問題;
2. 在解決綜合題和探索性問題實(shí)踐中加深對(duì)基礎(chǔ)知識(shí)、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識(shí),溝通各類知識(shí)的聯(lián)系,形成更完整的知識(shí)網(wǎng)絡(luò),提高分析問題和解決問題的能力,
進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問題與解決問題的能力。
3. 培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問題的自覺性、培養(yǎng)學(xué)生主動(dòng)探索的精神和科學(xué)理性的思維方法.
高中數(shù)學(xué)解題方法:排列組合篇
1. 掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
2. 理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡單的應(yīng)用問題。
3. 理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
4. 掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡單的問題。
5. 了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
6. 了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。
7. 了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
8. 會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.
猜你感興趣的: