特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > 學習方法 > 各學科學習方法 > 數(shù)學學習方法 > 小學數(shù)學的思想方法

小學數(shù)學的思想方法

時間: 芷瓊1026 分享

小學數(shù)學的思想方法

  數(shù)學思想的學習與實踐是促進學生培養(yǎng)數(shù)學思維、提升數(shù)學素質(zhì)、增強主動學習能力增的重要途徑,能夠幫助學生積極參與和獨立思考,下面是學習啦小編為你整理的小學數(shù)學思想方法,一起來看看吧。

  小學數(shù)學思想方法:符號化思想

  1.符號化思想的概念

  數(shù)學符號是數(shù)學的語言,數(shù)學世界是一個符號化的世界,數(shù)學作為人們進行表示、計算、推理和解決問題的工具,符號起到了非常重要的作用;因為數(shù)學有了符號,才使得數(shù)學具有簡明、抽象、清晰、準確等特點,同時也促進了數(shù)學的普及和發(fā)展;國際通用的數(shù)學符號的使用,使數(shù)學成為國際化的語言。符號化思想是一般化的思想方法,具有普遍的意義。

  2.如何理解符號化思想

  數(shù)學課程標準比較重視培養(yǎng)學生的符號意識,并提出了幾點要求。那么,在小學階段,如何理解這一重要思想呢?下面結(jié)合案例做簡要解析。

  第一,能從具體情境中抽象出數(shù)量關(guān)系和變化規(guī)律,并用符號表示。這是一個從具體到抽象、從特殊到一般的探索和歸納的過程。如通過幾組具體的兩個數(shù)相加,交換加數(shù)的位置和不變,歸納出加法交換律,并用符號表示:a+b=b+a。再如在長方形上拼擺單位面積的小正方形,探索并歸納出長方形的面積公式,并用符號表示:S=ab。這是一個符號化的過程,同時也是一個模型化的過程。

  第二,理解符號所代表的數(shù)量關(guān)系和變化規(guī)律。這是一個從一般到特殊、從理論到實踐的過程。包括用關(guān)系式、表格和圖象等表示情境中數(shù)量間的關(guān)系。如假設(shè)一個正方形的邊長是a,那么4a就表示該正方形的周長,a²表示該正方形的面積。這同樣是一個符號化的過程,同時也是一個解釋和應(yīng)用模型的過程。

  第三,會進行符號間的轉(zhuǎn)換。數(shù)量間的關(guān)系一旦確定,便可以用數(shù)學符號表示出來,但數(shù)學符號不是唯一的,可以豐富多彩。如一輛汽車的行駛時速為定值80千米,那么該輛汽車行駛的路程和時間成正比,它們之間的數(shù)量關(guān)系既可以用表格的形式表示,也可以用公式s=80t表示,還可以用圖象表示。即這些符號是可以相互轉(zhuǎn)換的。

  第四,能選擇適當?shù)某绦蚝头椒ń鉀Q用符號所表示的問題。這是指完成符號化后的下一步工作,就是進行數(shù)學的運算和推理。能夠進行正確的運算和推理是非常重要的數(shù)學基本功,也是非常重要的數(shù)學能力。

  3.符號化思想的具體應(yīng)用

  數(shù)學的發(fā)展雖然經(jīng)歷了幾千年,但是數(shù)學符號的規(guī)范和統(tǒng)一卻經(jīng)歷了比較慢長的過程。如我們現(xiàn)在通用的算術(shù)中的十進制計數(shù)符號數(shù)字0~9于公元8世紀在印度產(chǎn)生,經(jīng)過了幾百年才在全世界通用,從通用至今也不過幾百年。代數(shù)在早期主要是以文字為主的演算,直到16、17世紀韋達、笛卡爾和萊布尼茲等數(shù)學家逐步引進和完善了代數(shù)的符號體系。

  4.符號化思想的教學

  符號化思想作為數(shù)學最基本的思想之一,數(shù)學課程標準把培養(yǎng)學生的符號意識作為必學的內(nèi)容,并提出了具體要求,足以證明它的重要性。教師在日常教學中要給予足夠的重視,并落實到課堂教學目標中。要創(chuàng)設(shè)合適的情境,引導學生在探索中歸納和理解數(shù)學模型,并進行解釋和應(yīng)用。學生只有理解和掌握了數(shù)學符號的內(nèi)涵和思想,才有可能利用它們進行正確的運算、推理和解決問題。

  數(shù)學符號是人們在研究現(xiàn)實世界的數(shù)量關(guān)系和空間形式的過程中產(chǎn)生的,它來源于生活,但并不是生活中真實的物質(zhì)存在,而是一種抽象概括。如數(shù)字1,它可以表示現(xiàn)實生活中任何數(shù)量是一個的物體的個數(shù),是一種高度的抽象概括,具有一定的抽象性。一個數(shù)學符號一旦產(chǎn)生并被廣泛應(yīng)用,它就具有明確的含義,就能夠進行精確的數(shù)學運算和推理證明,因而它具有精確性。數(shù)學能夠幫助人們完成大量的運算和推理證明,但如果沒有簡捷的思想和符號的參與,它的工作量及難度也是很大的,讓人望而生畏。一旦簡捷的符號參與了運算和推理證明,數(shù)學的簡捷性就體現(xiàn)出來了。

  如歐洲人12世紀以前基本上用羅馬數(shù)字進行計數(shù)和運算,由于這種計數(shù)法不是十進制的,大數(shù)的四則運算非常復(fù)雜,嚴重阻礙了數(shù)學的發(fā)展和普及。直到12世紀印度數(shù)字及十進制計數(shù)法傳入歐洲,才使得算術(shù)有了較快發(fā)展和普及。數(shù)學符號的發(fā)展也經(jīng)歷了從各自獨立到逐步規(guī)范、統(tǒng)一和國際化的過程,最明顯的就是早期的數(shù)字符號從各自獨立的埃及數(shù)字、巴比倫數(shù)字、中國數(shù)字、印度數(shù)字和羅馬數(shù)字到統(tǒng)一的阿拉伯數(shù)字。數(shù)學符號經(jīng)歷了從發(fā)明到應(yīng)用再到統(tǒng)一的逐步完善的過程,并促進了數(shù)學的發(fā)展;反之,數(shù)學的發(fā)展也促進了符號的發(fā)展。因而,數(shù)學和符號是相互促進發(fā)展的,而且這種發(fā)展可能是一個慢長的過程。因而,符號意識的培養(yǎng)也應(yīng)貫穿于數(shù)學學習的整個過程中,并需要一定的訓練才能達到比較熟練的程度。

  小學數(shù)學思想方法:化歸思想

  1.化歸思想的概念

  人們在面對數(shù)學問題,如果直接應(yīng)用已有知識不能或不易解決該問題時,往往將需要解決的問題不斷轉(zhuǎn)化形式,把它歸結(jié)為能夠解決或比較容易解決的問題,最終使原問題得到解決,把這種思想方法稱為化歸(轉(zhuǎn)化)思想。

  從小學到中學,數(shù)學知識呈現(xiàn)一個由易到難、從簡到繁的過程;然而,人們在學習數(shù)學、理解和掌握數(shù)學的過程中,卻經(jīng)常通過把陌生的知識轉(zhuǎn)化為熟悉的知識、把繁難的知識轉(zhuǎn)化為簡單的知識,從而逐步學會解決各種復(fù)雜的數(shù)學問題。因此,化歸既是一般化的數(shù)學思想方法,具有普遍的意義;同時,化歸思想也是攻克各種復(fù)雜問題的法寶之一,具有重要的意義和作用。

  2.化歸所遵循的原則

  化歸思想的實質(zhì)就是在已有的簡單的、具體的、基本的知識的基礎(chǔ)上,把未知化為已知、把復(fù)雜化為簡單、把一般化為特殊、把抽象化為具體、把非常規(guī)化為常規(guī),從而解決各種問題。因此,應(yīng)用化歸思想時要遵循以下幾個基本原則:

  (1)數(shù)學化原則,即把生活中的問題轉(zhuǎn)化為數(shù)學問題,建立數(shù)學模型,從而應(yīng)用數(shù)學知識找到解決問題的方法。數(shù)學來源于生活,應(yīng)用于生活。學習數(shù)學的目的之一就是要利用數(shù)學知識解決生活中的各種問題,課程標準特別強調(diào)的目標之一就是培養(yǎng)實踐能力。因此,數(shù)學化原則是一般化的普遍的原則之一。

  (2)熟悉化原則,即把陌生的問題轉(zhuǎn)化為熟悉的問題。人們學習數(shù)學的過程,就是一個不斷面對新知識的過程;解決疑難問題的過程,也是一個面對陌生問題的過程。從某種程度上說,這種轉(zhuǎn)化過程對學生來說既是一個探索的過程,又是一個創(chuàng)新的過程;與課程標準提倡培養(yǎng)學生的探索能力和創(chuàng)新精神是一致的。因此,學會把陌生的問題轉(zhuǎn)化為熟悉的問題,是一個比較重要的原則。

  (3)簡單化原則,即把復(fù)雜的問題轉(zhuǎn)化為簡單的問題。對解決問題者而言,復(fù)雜的問題未必都不會解決,但解決的過程可能比較復(fù)雜。因此,把復(fù)雜的問題轉(zhuǎn)化為簡單的問題,尋求一些技巧和捷徑,也不失為一種上策。

  (4)直觀化原則,即把抽象的問題轉(zhuǎn)化為具體的問題。數(shù)學的特點之一便是它具有抽象性。有些抽象的問題,直接分析解決難度較大,需要把它轉(zhuǎn)化為具體的問題,或者借助直觀手段,比較容易分析解決。因而,直觀化是中小學生經(jīng)常應(yīng)用的方法,也是重要的原則之一。

  3.化歸思想的具體應(yīng)用

  學生面對的各種數(shù)學問題,可以簡單地分為兩類:一類是直接應(yīng)用已有知識便可順利解答的問題;另一種是陌生的知識、或者不能直接應(yīng)用已有知識解答的問題,需要綜合地應(yīng)用已有知識或創(chuàng)造性地解決的問題。如知道一個長方形的長和寬,求它的面積,只要知道長方形面積公式的人,都可以計算出來,這是第一類問題;如果不知道平行四邊形的面積公式,通過割補平移變換把平行四邊形轉(zhuǎn)化為長方形,推導出它的面積公式,再計算面積,這是第二類問題。對于廣大中小學生來說,他們在學習數(shù)學的過程中所遇到的很多問題都可以歸為第二類問題,并且要不斷地把第二類問題轉(zhuǎn)化為第一類問題。解決問題的過程,從某種意義上來說就是不斷地轉(zhuǎn)化求解的過程,因此,化歸思想應(yīng)用非常廣泛。

  小學數(shù)學思想方法:模型思想

  1. 模型思想的概念。

  數(shù)學模型是用數(shù)學語言概括地或近似地描述現(xiàn)實世界事物的特征、數(shù)量關(guān)系和空間形式的一種數(shù)學結(jié)構(gòu)。從廣義角度講,數(shù)學的概念、定理、規(guī)律、法則、公式、性質(zhì)、數(shù)量關(guān)系式、圖表、程序等都是數(shù)學模型。數(shù)學的模型思想是一般化的思想方法,數(shù)學模型的主要表現(xiàn)形式是數(shù)學符號表達式和圖表,因而它與符號化思想有很多相通之處,同樣具有普遍的意義。不過,也有很多數(shù)學家對數(shù)學模型的理解似乎更注重數(shù)學的應(yīng)用性,即把數(shù)學模型描述為特定的事物系統(tǒng)的數(shù)學關(guān)系結(jié)構(gòu)。如通過數(shù)學在經(jīng)濟、物理、農(nóng)業(yè)、生物、社會學等領(lǐng)域的應(yīng)用,所構(gòu)造的各種數(shù)學模型。為了把數(shù)學模型與數(shù)學知識或是符號思想明顯地區(qū)分開來,本文主要從俠義的角度討論數(shù)學模型,即重點分析小學數(shù)學的應(yīng)用及數(shù)學模型的構(gòu)建。

  2. 模型思想的重要意義。

  數(shù)學模型是運用數(shù)學的語言和工具,對現(xiàn)實世界的一些信息進行適當?shù)暮喕?jīng)過推理和運算,對相應(yīng)的數(shù)據(jù)進行分析、預(yù)測、決策和控制,并且要經(jīng)過實踐的檢驗。如果檢驗的結(jié)果是正確的,便可以指導我們的實踐。如上所述,數(shù)學模型在當今市場經(jīng)濟和信息化社會已經(jīng)有比較廣泛的應(yīng)用;因而,模型思想在數(shù)學思想方法中有非常重要的地位,在數(shù)學教育領(lǐng)域也應(yīng)該有它的一席之地。

  如果說符號化思想更注重數(shù)學抽象和符號表達,那么模型思想更注重數(shù)學的應(yīng)用,即通過數(shù)學結(jié)構(gòu)化解決問題,尤其是現(xiàn)實中的各種問題;當然,把現(xiàn)實情境數(shù)學結(jié)構(gòu)化的過程也是一個抽象的過程。現(xiàn)行的數(shù)學課程標準對符號化思想有明確的要求,如要求學生“能從具體情境中抽象出數(shù)量關(guān)系和變化規(guī)律,并用符號來表示”這實際上就包含了模型思想。

  但是,課程標準對第一、二學段并沒有明確提出模型思想的要求,只是在第三學段的內(nèi)容標準和教學建議中明確提出了模型思想,要求在教學中“注重使學生經(jīng)歷從實際問題中建立數(shù)學模型”,教學過程以“問題情境—建立模型—解釋、應(yīng)用與拓展”的模式展開。如果說小學數(shù)學教育工作者中有人關(guān)注了模型思想,多數(shù)人基本上只是套用第三學段對模型思想的要求進行研究,也很難做到要求的具體化和課堂教學的貫徹落實。

  據(jù)了解,即將頒布的課程標準修改稿與現(xiàn)行的課程標準相比有了較大變化,在課程內(nèi)容部分中明確提出了“初步形成模型思想”,并具體解釋為“模型思想的建立是幫助學生體會和理解數(shù)學與外部世界聯(lián)系的基本途徑。建立和求解模型的過程包括:從現(xiàn)實生活或具體情境中抽象出數(shù)學問題,用數(shù)學符號建立方程、不等式、函數(shù)等表示數(shù)學問題中的數(shù)量關(guān)系和變化規(guī)律,求出結(jié)果、并討論結(jié)果的意義。

  這些內(nèi)容的學習有助于學生初步形成模型思想,提高學習數(shù)學的興趣和應(yīng)用意識”。并在教材編寫建議中提出了“教材應(yīng)當根據(jù)課程內(nèi)容,設(shè)計運用數(shù)學知識解決問題的活動。這樣的活動應(yīng)體現(xiàn)‘問題情境─建立模型─求解驗證’的過程,這個過程要有利于理解和掌握相關(guān)的知識技能,感悟數(shù)學思想、積累活動經(jīng)驗;要有利于提高發(fā)現(xiàn)和提出問題的能力、分析和解決問題的能力,增強應(yīng)用意識和創(chuàng)新意識”。

  這是否可以理解為:在小學階段,從課程標準的角度正式提出了模型思想的基本理念和作用,并明確了模型思想的重要意義。這不僅表明了數(shù)學的應(yīng)用價值,同時明確了建立模型是數(shù)學應(yīng)用和解決問題的核心。

  3. 模型思想的具體應(yīng)用。

  數(shù)學的發(fā)現(xiàn)和發(fā)展過程,也是一個應(yīng)用的過程。從這個角度而言,伴隨著數(shù)學知識的產(chǎn)生和發(fā)展,數(shù)學模型實際上也隨后產(chǎn)生和發(fā)展了。如自然數(shù)系統(tǒng)1,2,3,…是描述離散數(shù)量的數(shù)學模型。2000多年前的古人用公式計算土地面積,用方程解決實際問題等,實際上都是用各種數(shù)學知識建立數(shù)學模型來解決問題的。就小學數(shù)學的應(yīng)用來說,大多數(shù)是古老的初等數(shù)學的簡單應(yīng)用,也許在數(shù)學家的眼里,這根本就不是真正的數(shù)學模型;不過,小學數(shù)學的應(yīng)用雖然簡單,但仍然是現(xiàn)實生活和進一步學習所不可或缺的。


猜你感興趣的:

1.常見的數(shù)學思想方法

2.小學數(shù)學學習方法

3.小學數(shù)學學習方法總結(jié)

4.小學數(shù)學教育方法

5.小學數(shù)學教學方法 小學數(shù)學教學技巧

3151349