特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 高中數(shù)學(xué)排列組合公式大全_高中數(shù)學(xué)排列組合重點(diǎn)知識(shí)

高中數(shù)學(xué)排列組合公式大全_高中數(shù)學(xué)排列組合重點(diǎn)知識(shí)

時(shí)間: 芷瓊1026 分享

高中數(shù)學(xué)排列組合公式大全_高中數(shù)學(xué)排列組合重點(diǎn)知識(shí)

  排列組合是高中數(shù)學(xué)教學(xué)內(nèi)容中的重要組成部分,在高考試卷中排列組合的占分比越來(lái)越高,且出現(xiàn)的形式多種多樣。下面學(xué)習(xí)啦小編給你分享高中數(shù)學(xué)排列組合公式大全,歡迎閱讀。

  高中數(shù)學(xué)排列組合公式大全

  1.排列及計(jì)算公式

  從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào) p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(規(guī)定0!=1).

  2.組合及計(jì)算公式

  從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號(hào)

  c(n,m) 表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

  3.其他排列與組合公式

  從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.

  n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為

  n!/(n1!*n2!*...*nk!).

  k類元素,每類的個(gè)數(shù)無(wú)限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m).

  排列(Pnm(n為下標(biāo),m為上標(biāo)))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號(hào));Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo)) =n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n

  組合(Cnm(n為下標(biāo),m為上標(biāo)))

  Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo)) =1 ;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m

  高中數(shù)學(xué)排列組合公式記憶口訣

  加法乘法兩原理,貫穿始終的法則。與序無(wú)關(guān)是組合,要求有序是排列。

  兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問(wèn)題須轉(zhuǎn)化。

  排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。

  不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。

  關(guān)于二項(xiàng)式定理,中國(guó)楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。

  高中數(shù)學(xué)排列組合重點(diǎn)知識(shí)

  1.計(jì)數(shù)原理知識(shí)點(diǎn)

 ?、俪朔ㄔ恚篘=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分類)

  2. 排列(有序)與組合(無(wú)序)

  Anm=n(n-1)(n-2)(n-3)­…(n-m+1)=n!/(n-m)! Ann =n!

  Cnm = n!/(n-m)!m!

  Cnm= Cnn-m  Cnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k!

  3.排列組合混合題的解題原則:先選后排,先分再排

  排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素. 以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

  捆綁法(集團(tuán)元素法,把某些必須在一起的元素視為一個(gè)整體考慮)

  插空法(解決相間問(wèn)題)  間接法和去雜法等等

  在求解排列與組合應(yīng)用問(wèn)題時(shí),應(yīng)注意:

  (1)把具體問(wèn)題轉(zhuǎn)化或歸結(jié)為排列或組合問(wèn)題;

  (2)通過(guò)分析確定運(yùn)用分類計(jì)數(shù)原理還是分步計(jì)數(shù)原理;

  (3)分析題目條件,避免“選取”時(shí)重復(fù)和遺漏;

  (4)列出式子計(jì)算和作答.

  經(jīng)常運(yùn)用的數(shù)學(xué)思想是:

 ?、俜诸愑懻撍枷?②轉(zhuǎn)化思想;③對(duì)稱思想.

  4.二項(xiàng)式定理知識(shí)點(diǎn):

 ?、?a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+­…+ Cn n-1abn-1+ Cnnbn

  特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

  ②主要性質(zhì)和主要結(jié)論:對(duì)稱性Cnm=Cnn-m

  最大二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))

  所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n

  奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和

  Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1

  ③通項(xiàng)為第r+1項(xiàng): Tr+1= Cnran-rbr 作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問(wèn)題。

  5.二項(xiàng)式定理的應(yīng)用:解決有關(guān)近似計(jì)算、整除問(wèn)題,運(yùn)用二項(xiàng)展開式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。  6.注意二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)(字母項(xiàng)的系數(shù),指定項(xiàng)的系數(shù)等,指運(yùn)算結(jié)果的系數(shù))的區(qū)別,在求某幾項(xiàng)的系數(shù)的和時(shí)注意賦值法的應(yīng)用。


猜你喜歡:
1.高中數(shù)學(xué)公式排列組合

2.高一數(shù)學(xué)排列組合公式

3.高二數(shù)學(xué)排列與組合知識(shí)點(diǎn)總結(jié)

4.高中數(shù)學(xué)排列組合解題技巧

5.高中數(shù)學(xué)排列與組合知識(shí)點(diǎn)

2926805