初中數學基本知識
初中數學基本知識
很多人會認為初三數學上冊知識很簡單,其實在每一本數學教科書的背后都傾注著很多學者的心血。甚至于說每一個概念,每一條定義都是經過學者們反復論證的結晶!學習啦為大家整理了初中數學的基本知識,歡迎大家閱讀!
初中數學基本知識第一部分
1過兩點有且只有一條直線
2兩點之間線段最短
3同角或等角的補角相等
4同角或等角的余角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連接的所有線段中,垂線段最短
7平行公理經過直線外一點,有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內錯角相等,兩直線平行
11同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內錯角相等
14兩直線平行,同旁內角互補
15定理三角形兩邊的和大于第三邊
16推論三角形兩邊的差小于第三邊
17三角形內角和定理三角形三個內角的和等于180°
18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內角的和
20推論3三角形的一個外角大于任何一個和它不相鄰的內角
21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27定理1在角的平分線上的點到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
初中數學基本知識第二部分
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,并且每一個角都等于60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形
36推論2有一個角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42定理1關于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形
48定理四邊形的內角和等于360°
49四邊形的外角和等于360°
50多邊形內角和定理n邊形的內角的和等于(n-2)×180°
51推論任意多邊的外角和等于360°
52平行四邊形性質定理1平行四邊形的對角相等
53平行四邊形性質定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1矩形的四個角都是直角
61矩形性質定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形
63矩形判定定理2對角線相等的平行四邊形是矩形
64菱形性質定理1菱形的四條邊都相等
65菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質定理1正方形的四個角都是直角,四條邊都相等
初中數學基本知識第三部分
70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1關于中心對稱的兩個圖形是全等的
72定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一
點平分,那么這兩個圖形關于這一點對稱
74等腰梯形性質定理等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
83(1)比例的基本性質如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d
84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97性質定理2相似三角形周長的比等于相似比
98性質定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點的距離等于定長的點的集合
102圓的內部可以看作是圓心的距離小于半徑的點的集合
103圓的外部可以看作是圓心的距離大于半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理不在同一直線上的三點確定一個圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
看了“初中數學基本知識”的人還看了: