正多邊形和圓教案設計
初中數(shù)學的學習,是一個打基礎的過程。下面是學習啦小編收集整理的初三數(shù)學《正多邊形和圓》教案設計以供大家學習。
教學目標 :
(1)使學生理解正多邊形概念,初步掌握正多邊形與圓的關(guān)系的第一個定理;
(2)通過正多邊形定義教學,培養(yǎng)學生歸納能力;通過正多邊形與圓關(guān)系定理的教學培養(yǎng)學生觀察、猜想、推理、遷移能力;
(3)進一步向?qū)W生滲透“特殊——一般”再“一般——特殊”的唯物辯證法思想.
教學重點:
正多邊形的概念與的關(guān)系的第一個定理.
教學難點:
對定理的理解以及定理的證明方法.
教學活動設計:
(一)觀察、分析、歸納:
觀察、分析:1.等邊三角形的邊、角各有什么性質(zhì)?
2.正方形的邊、角各有什么性質(zhì)?
歸納:等邊三角形與正方形的邊、角性質(zhì)的共同點.
教師組織學生進行,并可以提問學生問題.
(二)正多邊形的概念:
(1)概念:各邊相等、各角也相等的多邊形叫做正多邊形.如果一個正多邊形有n(n≥3)條邊,就叫正n邊形.等邊三角形有三條邊叫正三角形,正方形有四條邊叫正四邊形.
(2)概念理解:
?、僬埻瑢W們舉例,自己在日常生活中見過的正多邊形.(正三角形、正方形、正六邊形,…….)
②矩形是正多邊形嗎?為什么?菱形是正多邊形嗎?為什么?
矩形不是正多邊形,因為邊不一定相等.菱形不是正多邊形,因為角不一定相等.
(三)分析、發(fā)現(xiàn):
問題:正多邊形與圓有什么關(guān)系呢?
發(fā)現(xiàn):正三角形與正方形都有內(nèi)切圓和外接圓,并且為同心圓.
分析:正三角形三個頂點把圓三等分;正方形的四個頂點把圓四等分.要將圓五等分,把等分點順次連結(jié),可得正五邊形.要將圓六等分呢?
(四)多邊形和圓的關(guān)系的定理
定理:把圓分成n(n≥3)等份:
(1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形;
(2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形.
我們以n=5的情況進行證明.
已知:⊙O中, ====,TP、PQ、QR、RS、ST分別是經(jīng)過點A、B、C、D、E的⊙O的切線.
求證:(1)五邊形ABCDE是⊙O的內(nèi)接正五邊形;
(2)五邊形PQRST是⊙O的外切正五邊形.
證明:(略)
引導學生分析、歸納證明思路:
弧相等
說明:(1)要判定一個多邊形是不是正多邊形,除根據(jù)定義來判定外,還可以根據(jù)這個定理來判定,即:①依次連結(jié)圓的n(n≥3)等分點,所得的多邊形是正多迫形;②經(jīng)過圓的n(n≥3)等分點作圓的切線,相鄰切線相交成的多邊形是正多邊形.
(2)要注意定理中的“依次”、“相鄰”等條件.
(3)此定理被稱為正多邊形的判定定理,我們可以根據(jù)它判斷一多邊形為正多邊形或根據(jù)它作正多邊形.
(五)初步應用
P157練習
1、(口答)矩形是正多邊形嗎?菱形是正多邊形嗎?為什么?
2.求證:正五邊形的對角線相等.
3.如圖,已知點A、B、C、D、E是⊙O的5等分點,畫出⊙O的內(nèi)接和外切正五邊形.
(六)小結(jié):
知識:(1)正多邊形的概念.(2)n等分圓周(n≥3)可得圓的內(nèi)接正n邊形和圓的外切正n邊形.
能力和方法:正多邊形的證明方法和思路,正多邊形判斷能力
(七)作業(yè): 教材P172習題A組2、3