九年級上期末數(shù)學(xué)測試題及答案
九年級上期末數(shù)學(xué)測試題及答案
要樹立信心,一定要爭取成功!相信自己永遠(yuǎn)是最棒的!明天的陽光將因你而更加燦爛!祝九年級數(shù)學(xué)期末考順利,金榜題名。小編整理了關(guān)于九年級上期末數(shù)學(xué)測試題,希望對大家有幫助!
九年級上期末數(shù)學(xué)試題
一、選擇題(本大題共16個小題,1-10題,每小題3分;11-16題,每小題3分,共42分)
1.方程x2﹣2x=0的根是( )
A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣2
2.某幾何體的三視圖如圖所示,則這個幾何體是( )
A.圓柱 B.正方體 C.球 D.圓錐
3.用配方法解一元二次方程x2﹣4x﹣5=0的過程中,配方正確的是( )
A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9
4.如圖,△ABC的三個頂點都在正方形網(wǎng)格的格點上,則sin∠A的值為( )
A. B. C. D.
5.一元二次方程x2+2x﹣1=0的兩根為x1,x2,則x1+x2的值為( )
A.2 B.﹣2 C.1 D.﹣1
6.若反比例函數(shù)y= 的圖象經(jīng)過點(﹣3,2),則該反比例函數(shù)的圖象在( )
A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
7.如圖,四邊形ABCD是正方形,對角線AC,BD交于點O,下列結(jié)論:①OA=OB;②∠ACB=45°;③AC⊥BD;④正方形ABCD有四條對稱軸.上述結(jié)論正確的有( )
A.①②③④ B.①②③ C.②③④ D.①③④
8.已知反比例函數(shù)y= 的圖象上有兩點A(x1,y1),B(x2,y2),當(dāng)x1<0
A.m<0 B.m>0 C.m< D.m>
9.如圖,線段AB兩個端點的坐標(biāo)分別為A(1,2),B(2,0),以原點為位似中心,將線段AB放大,得到線段CD,若B點的對應(yīng)點D的坐標(biāo)為(6,0),則點C的坐標(biāo)為( )
A.(2,4) B.(2,6) C.(3,6) D.(4,6)
10.在同一坐標(biāo)系中,作出函數(shù)y=kx2和y=kx﹣2(k≠0)的圖象,只可能是( )
A. B. C. D.
11.如圖,D,E分別是△ABC的邊AB,AC上的中點,CD與BE交于點O,則S△DOE:S△BOC的值為( )
A. B. C. D.
12.某商店3月份的營業(yè)額為15萬元,4月份的營業(yè)額比3月份的營業(yè)額減少了10%,商店經(jīng)過加強管理,實施各種措施.使得5,6月份的營業(yè)額連續(xù)增長,6月份的營業(yè)額達(dá)到了20萬元;設(shè)5,6月份的營業(yè)額的平均增長率為x,以題意可列方程為( )
A.15(1+x)2=20 B.20(1+x)2=15
C.15(1﹣10%)(1+x)2=20 D.20(1﹣10%)(1+x)2=15
13.如圖,某天小明發(fā)現(xiàn)陽光下電線桿AB的影子落在土坡的坡面CD和地面BC上,量的CD=8米,BC=20米,斜坡CD的坡度比為1: ,且此時測得1米桿的影長為2米,則電線桿的高度為( )
A.(14+2 )米 B.28米 C.(7+ )米 D.9米
14.如圖,菱形OABC的頂點O在坐標(biāo)系原點,頂點A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點O順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點B′的坐標(biāo)為( )
A.(﹣ , ) B.( ,﹣ ) C.(2,﹣2) D.( ,﹣ )
15.點C是線段AB的黃金分割點,且AB=6cm,則BC的長為( )
A.(3 ﹣3)cm B.(9﹣3 )cm
C.(3 ﹣3)cm 或(9﹣3 )cm D.(9﹣3 )cm 或(6 ﹣6)cm
16.已知拋物線y=ax2+bx+4在坐標(biāo)系中的位置如圖所示,它與x,y軸的交點分別為A(﹣1,0),B,P是其對稱軸x=1上的動點,根據(jù)圖中提供的信息,得出以下結(jié)論:
?、?a+b=0,
②x=3是方程ax2+bx+4=0的一個根,
③△PAB周長的最小值是5+ ,
?、?a+4<3b.
其中正確的是( )
A.1個 B.2個 C.3個 D.4個
二、填空題(本大題4個小題,每小題3分,共12分)
17.函數(shù)y=2(x﹣4)2+5的頂點坐標(biāo)為 .
18.若3x=5y(y≠0),則 = .
19.無論x取任何實數(shù),代數(shù)式2x2+4x+m與代數(shù)式3x2﹣2x+6的值總不相等,則m的取值范圍是 .
20.在一次科技活動中,小明進(jìn)行了模擬雷達(dá)掃描實驗,表盤是△ABC,其中AB=AC=20,∠BAC=120°,在點A處有一束紅外光線AP,從AB開始,繞點A逆時針勻速旋轉(zhuǎn),每秒旋轉(zhuǎn)15°,到達(dá)AC后立即以相同旋轉(zhuǎn)速度返回AB,到達(dá)后立即重復(fù)上述旋轉(zhuǎn)過程,設(shè)AP與BC邊的交點為M,旋轉(zhuǎn)2019秒,則MC= .
三、解答題(本大題共66分)
21.某校九年級教師在講“解直角三角形”一節(jié)時,帶領(lǐng)一個小組登上學(xué)校教學(xué)樓上的一個平臺,測量與學(xué)校毗鄰的一生活小區(qū)的一棟居民樓AB的高度,平臺C距離地面D高10米,在C處測得居民樓樓底B的俯角為22.5°,樓頂端A的仰角為60°,測完后,記錄好數(shù)據(jù),回到教師,將示意圖畫在黑板上,如圖所示,要求全班學(xué)生按示意圖,求出居民樓AB的高度.(最后結(jié)果精確到0.1)(參考數(shù)據(jù):tan22.5°= ﹣1, =1.73, =1.41)
22.在一個不透明的袋中裝著3個紅球和2個黃球,它們只有顏色上的區(qū)別,隨機從袋中摸出1個小球,記下顏色不放回,再從袋子中任意取出1個小球,記下顏色:
(1)若取出的第一個小球為紅色,則取出的第二個小球仍為紅球的概率是 ;
(2)按要求從袋子中取出的兩個球,請畫出樹狀圖或列表格,并求出取出的兩個小球中有1個黃球、1個紅球的概率.
23.如圖,已知Rt△ABC中,∠C=90°,∠B=30°,O為AB邊中點,將△ABC繞點O逆時針旋轉(zhuǎn)60°至△EDA位置,連接CD.
(1)求證:OD⊥BC;
(2)求證:四邊形AODC為菱形.
24.如圖,已知:矩形OABC的頂點A,C分別在x,y軸的正半軸上,O為平面直角坐標(biāo)系的原點;直線y=x+1分別交x,y軸及矩形OABC的BC邊于E,M,F(xiàn),且△EOM≌△FCM;過點F的雙曲線y= (x>0)與AB交于點N.
(1)求k的值;
(2)當(dāng)x 時, >x+1;
(3)若F為BC中點,求BN的長.
25.某商品專營店購進(jìn)一批進(jìn)價為16元/件的商品,銷售一段時間后,為了獲得更多利潤,商店決定提高銷售價格,經(jīng)試驗發(fā)現(xiàn),若每件按20元的價格銷售時,每月能賣360件;若每件每漲1元,每天少賣10件;設(shè)銷售價格為x(元/件)時,每天銷售y(件),日總利潤為W元.物價局規(guī)定:此類商品的售價不得低于進(jìn)價,又不得高于進(jìn)價的3倍銷售,即16≤x≤48.
(利潤=售價﹣進(jìn)價,或總利潤=單間利潤×總銷售件數(shù))
(1)售價25元/件時,日銷量 件,日總利潤為 元;
(2)求y與x之間的關(guān)系式;
(3)求W與x之間的關(guān)系式,問銷售價格為多少時,才能使每日獲得最大利潤?日最大利潤是多少?
(4)商店為減少庫存,在保證日利潤3000元的前題條件下,商店該以多少元/件銷售.
26.如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.點P從A出發(fā),沿AB方向,以2cm/s的速度向點B運動,點Q從C出發(fā),沿CA方向,以1cm/s的速度向點A運動;若兩點同時出發(fā),當(dāng)其中一點到達(dá)端點時,兩點同時停止運動,設(shè)運動時間為t(s),△APQ的面積為S(cm2)
(1)t=2時,則點P到AC的距離是 cm,S= cm2;
(2)t為何值時,PQ⊥AB;
(3)t為何值時,△APQ是以AQ為底邊的等腰三角形;
(4)求S與t之間的函數(shù)關(guān)系式,并求出S的最大值.
下一頁分享>>>九年級上期末數(shù)學(xué)測試題答案