初三數(shù)學(xué)上期末試卷
九年級(jí)數(shù)學(xué)期末考即將來臨,展示自我的時(shí)刻:有信心而無膽怯,有動(dòng)力而無壓力,莫緊張無焦慮,答題迅速不慌亂!愿你馬到成功,金榜提名!下面小編給大家分享一些初三數(shù)學(xué)上期末試卷,大家快來跟小編一起看看吧。
初三數(shù)學(xué)上期末試題
一、選擇題(本大題共有10個(gè)小題,每小題3分,共30分.每小題只有一個(gè)正確選項(xiàng),請(qǐng)把正確選項(xiàng)的字母代號(hào)填在題后的括號(hào)內(nèi)).
1.下列四張撲克牌圖案,屬于中心對(duì)稱的是( )
A. B. C. D.
2.若關(guān)于x的一元二次方程x2﹣2x+m=0沒有實(shí)數(shù)根,則實(shí)數(shù)m的取值是( )
A.m<1 B.m>﹣1 C.m>1 D.m<﹣1
3.已知拋物線的解析式為y=(x﹣2)2+1,則這條拋物線的頂點(diǎn)坐標(biāo)是( )
A.(﹣2,1) B.(2,1) C.(2,﹣1) D.(1,2)
4.如圖,在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧 沿弦AC翻折交AB于點(diǎn)D,連接CD.如果∠BAC=20°,則∠BDC=( )
A.80° B.70° C.60° D.50°
5.用配方法解一元二次方程x2+4x﹣5=0,此方程可變形為( )
A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=1
6.如圖,已知在▱ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,AD=5,DC=4 則DA′的大小為( )
A.1 B. C. D.2
7.如圖,圓O與正方形ABCD的兩邊AB、AD相切,且DE與圓O相切于E點(diǎn).若圓O的半徑為5,且AB=11,則DE的長(zhǎng)度為何?( )
A.5 B.6 C. D.
8.下列事件中是必然發(fā)生的事件是( )
A.打開電視機(jī),正播放新聞
B.通過長(zhǎng)期努力學(xué)習(xí),你會(huì)成為數(shù)學(xué)家
C.從一副撲克牌中任意抽取一張牌,花色是紅桃
D.某校在同一年出生的有367名學(xué)生,則至少有兩人的生日是同一天
9.如果小強(qiáng)將鏢隨意投中如圖所示的正方形木板,那么鏢落在陰影部分的概率為( )
A. B. C. D.
10.當(dāng)ab>0時(shí),y=ax2與y=ax+b的圖象大致是( )
A. B. C. D.
二、填空題(本大題共有8小題,每小題3分,共24分.請(qǐng)把答案填在題中的橫線上.)
11.關(guān)于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根為0,則m= .
12.設(shè)拋物線y=x2+8x﹣k的頂點(diǎn)在x軸上,則k= .
13.如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,過點(diǎn)D作⊙O的切線,切點(diǎn)為C,若∠A=25°,則∠D= 度.
14.將直角邊長(zhǎng)為5cm的等腰直角△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后,得到△AB′C′,則圖中陰影部分的面積是 cm2.
15.不透明袋子中裝有9個(gè)球,其中有2個(gè)紅球、3個(gè)綠球和4個(gè)藍(lán)球,這些球除顏色外無其他差別.從袋子中隨機(jī)取出1個(gè)球,則它是紅球的概率是 .
16.下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個(gè)圖形中一共有6個(gè)小圓圈,第②個(gè)圖形中一共有9個(gè)小圓圈,第③個(gè)圖形中一共有12個(gè)小圓圈,…,按此規(guī)律排列,則第⑦個(gè)圖形中小圓圈的個(gè)數(shù)為 .
三、解答題:本大題共10個(gè)小題,滿分102分,解答時(shí)應(yīng)寫出必要的計(jì)算過程、推理步驟或文字說明.
17.解方程:(x﹣3)2+4x(x﹣3)=0.
18.如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),每個(gè)小方格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.正方形ABCD頂點(diǎn)都在格點(diǎn)上,其中,點(diǎn)A的坐標(biāo)為(1,1).
(1)將正方形ABCD繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°畫出旋轉(zhuǎn)后的圖形;
(2)若點(diǎn)B到達(dá)點(diǎn)B1,點(diǎn)C到達(dá)點(diǎn)C1,點(diǎn)D到達(dá)點(diǎn)D1,寫出點(diǎn)B1、C1、D1的坐標(biāo).
19.如圖,點(diǎn)A,B在⊙O上,直線AC是⊙O的切線,OC⊥OB,連接AB交OC于點(diǎn)D.求證:AC=CD.
20.甲、乙兩同學(xué)用一副撲克牌中牌面數(shù)字分別是:3,4,5,6的4張牌做抽數(shù)學(xué)游戲.游戲規(guī)則是:將這4張牌的正面全部朝下,洗勻,從中隨機(jī)抽取一張,抽得的數(shù)作為十位上的數(shù)字,然后,將所抽的牌放回,正面全部朝下、洗勻,再從中隨機(jī)抽取一張,抽得的數(shù)作為個(gè)位上的數(shù)字,這樣就得到一個(gè)兩位數(shù).若這個(gè)兩位數(shù)小于45,則甲獲勝,否則乙獲勝.你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)運(yùn)用概率知識(shí)說明理由.
21.已知正方形ABCD和正方形AEFG有一個(gè)公共點(diǎn)A,點(diǎn)G、E分別在線段AD、AB上,若將正方形AEFG繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)的過程中,你能否找到一條線段的長(zhǎng)與線段DG的長(zhǎng)度始終相等?并說明理由.
22.如圖是函數(shù)y= 與函數(shù)y= 在第一象限內(nèi)的圖象,點(diǎn)P是y= 的圖象上一動(dòng)點(diǎn),PA⊥x軸于點(diǎn)A,交y= 的圖象于點(diǎn)C,PB⊥y軸于點(diǎn)B,交y= 的圖象于點(diǎn)D.
(1)求證:D是BP的中點(diǎn);
(2)求四邊形ODPC的面積.
23.如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.
24.如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.
(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長(zhǎng).
25.某工廠擬建一座平面圖形為矩形且面積為200平方米的三級(jí)污水處理池(平面圖如圖ABCD所示).由于地形限制,三級(jí)污水處理池的長(zhǎng)、寬都不能超過16米.如果池的外圍墻建造單價(jià)為每米400元,中間兩條隔墻建造單價(jià)為每米300元,池底建造單價(jià)為每平方米80元.(池墻的厚度忽略不計(jì))當(dāng)三級(jí)污水處理池的總造價(jià)為47200元時(shí),求池長(zhǎng)x.
26.在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣4經(jīng)過A(﹣4,0),C(2,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=﹣x上的動(dòng)點(diǎn),點(diǎn)B是拋物線與y軸交點(diǎn).判斷有幾個(gè)位置能夠使以點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
下一頁分享>>>初三數(shù)學(xué)上期末試卷答案