初中數(shù)學(xué)知識(shí)要點(diǎn)口訣總匯(2)
初中數(shù)學(xué)知識(shí)要點(diǎn)口訣總匯
初中數(shù)學(xué)知識(shí)要點(diǎn)口訣總匯(四)
用常規(guī)配方法解一元二次方程
左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合并,直接開方去解題。
該種解法叫配方,解方程時(shí)多練習(xí)。
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調(diào)整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢。
【注】恒等式
解一元二次方程
方程沒有一次項(xiàng),直接開方最理想。
如果缺少常數(shù)項(xiàng),因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時(shí)不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數(shù)的鑒別
判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。
正比例函數(shù)是否,辨別需分兩步走。
一量表示另一量,有沒有。
若有再去看取值,全體實(shí)數(shù)都需要。
區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。
正比例函數(shù)的圖象與性質(zhì)
正比函數(shù)圖直線,經(jīng)過和原點(diǎn)。
K正一三負(fù)二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負(fù)左高右邊低,一大另小下山巒。
一次函數(shù)
一次函數(shù)圖直線,經(jīng)過點(diǎn)。
K正左低右邊高,越走越高向爬山。
K負(fù)左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數(shù)
反比函數(shù)雙曲線,經(jīng)過點(diǎn)。
K正一三負(fù)二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負(fù)左低右邊高,二四象限如爬山。
二次函數(shù)
二次方程零換y,二次函數(shù)便出現(xiàn)。
全體實(shí)數(shù)定義域,圖像叫做拋物線。
拋物線有對(duì)稱軸,兩邊單調(diào)正相反。
A定開口及大小,線軸交點(diǎn)叫頂點(diǎn)。
頂點(diǎn)非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點(diǎn),
提取配方定頂點(diǎn),兩條途徑再挑選。
列表描點(diǎn)后連線,平移規(guī)律記心間。
左加右減括號(hào)內(nèi),號(hào)外上加下要減。
二次方程零換y,就得到二次函數(shù)。
圖像叫做拋物線,定義域全體實(shí)數(shù)。
A定開口及大小,開口向上是正數(shù)。
絕對(duì)值大開口小,開口向下A負(fù)數(shù)。
拋物線有對(duì)稱軸,增減特性可看圖。
線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。
如果要畫拋物線,描點(diǎn)平移兩條路。
提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。
列表描點(diǎn)后連線,三點(diǎn)大致定全圖。
若要平移也不難,先畫基礎(chǔ)拋物線,
頂點(diǎn)移到新位置,開口大小隨基礎(chǔ)。
【注】基礎(chǔ)拋物線
初中數(shù)學(xué)知識(shí)要點(diǎn)口訣總匯(五)
直線、射線與線段
直線射線與線段,形狀相似有關(guān)聯(lián)。
直線長短不確定,可向兩方無限延。
射線僅有一端點(diǎn),反向延長成直線。
線段定長兩端點(diǎn),雙向延伸變直線。
兩點(diǎn)定線是共性,組成圖形最常見。
角
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補(bǔ)角。
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補(bǔ)角和平角。
證等積或比例線段
等積或比例線段,多種途徑可以證。
證等積要改等比,對(duì)照?qǐng)D形看特征。
共點(diǎn)共線線相交,平行截比把題證。
三點(diǎn)定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。
換后結(jié)論能成立,原來命題即得證。
實(shí)在不行用面積,射影角分線也成。
只要學(xué)習(xí)肯登攀,手腦并用無不勝。
解無理方程
一無一有各一邊,兩無也要放兩邊。
乘方根號(hào)無蹤跡,方程可解無負(fù)擔(dān)。
兩無一有相對(duì)難,兩次乘方也好辦。
特殊情況去換元,得解驗(yàn)根是必然。
解分式方程
先約后乘公分母,整式方程轉(zhuǎn)化出。
特殊情況可換元,去掉分母是出路。
求得解后要驗(yàn)根,原留增舍別含糊。
列方程解應(yīng)用題
列方程解應(yīng)用題,審設(shè)列解雙檢答。
審題弄清已未知,設(shè)元直間兩辦法。
列表畫圖造方程,解方程時(shí)守章法。
檢驗(yàn)準(zhǔn)且合題意,問求同一才作答。
添加輔助線
學(xué)習(xí)幾何體會(huì)深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規(guī)律,真知灼見靠實(shí)踐。
圖中已知有中線,倍長中線把線連。
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。
多條中線連中點(diǎn),便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現(xiàn)。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯(lián)系看。
兩點(diǎn)間距離公式
同軸兩點(diǎn)求距離,大減小數(shù)就為之。
與軸等距兩個(gè)點(diǎn),間距求法亦如此。
平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。
差方相加開平方,距離公式要牢記。
矩形的判定
任意一個(gè)四邊形,三個(gè)直角成矩形;
對(duì)角線等互平分,四邊形它是矩形。
已知平行四邊形,一個(gè)直角叫矩形;
兩對(duì)角線若相等,理所當(dāng)然為矩形。
菱形的判定
任意一個(gè)四邊形,四邊相等成菱形;
四邊形的對(duì)角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對(duì)角線若垂直,順理成章為菱形。
看過初中數(shù)學(xué)知識(shí)要點(diǎn)口訣總匯的還看了: