四川2016高考數(shù)學(xué)大綱
考試是檢測學(xué)生學(xué)習(xí)效果的重要手段和方法,考前需要做好各方面的知識儲備,包括對考綱的解讀和分析。下面是學(xué)習(xí)啦小編為大家整理的四川2016高考數(shù)學(xué)大綱,請認(rèn)真復(fù)習(xí)!
2016年全國高考大綱新鮮出爐——理科數(shù)學(xué)(四川用此考綱)
I.考試性質(zhì)
普通高等學(xué)校招生全國統(tǒng)一考試是合格的高中畢業(yè)生和具有同等學(xué)力的考生參加的選拔性考試.高等學(xué)校根據(jù)考生成績,按已確定的招 生計劃,德、智、體全面衡量,擇優(yōu)錄取.因此,高考應(yīng)具有較高的信度、 效度,必要的區(qū)分度和適當(dāng)?shù)碾y度.
?、?考試內(nèi)容
根據(jù)普通高等學(xué)校對新生文化素質(zhì)的要求,依據(jù)中華人民共和國教育部2003年頒布的《普通高中課程方案(實(shí)驗(yàn))》和《普通高中數(shù)學(xué) 課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》的必修課程、選修課程系列2和系列4的內(nèi)容,確定理工類高考數(shù)學(xué)科考試內(nèi)容.
數(shù)學(xué)科的考試,按照“考查基礎(chǔ)知識的同時,注重考查能力”的原則,確立以能力立意命題的指導(dǎo)思想,將知識、能力和素質(zhì)融為一體,全面檢測考生的數(shù)學(xué)素養(yǎng).
數(shù)學(xué)科考試,要發(fā)揮數(shù)學(xué)作為主要基礎(chǔ)學(xué)科的作用,要考查考生對中學(xué)的基礎(chǔ)知識、基本技能的掌握程度,要考查考生對數(shù)學(xué)思想方法和數(shù)學(xué)本質(zhì)的理解水平,要考查考生進(jìn)入高等學(xué)校繼續(xù)學(xué)習(xí)的潛能.
一、考核目標(biāo)與要求
1.知識要求
知識是指《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》(以下簡稱《課程標(biāo)準(zhǔn)》)中所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學(xué)概念、 性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法,還包括按照一定程序與步驟進(jìn)行運(yùn)算、處理數(shù)據(jù)、繪制圖表等基本技能.
各部分知識的整體要求及其定位參照《課程標(biāo)準(zhǔn)》相應(yīng)模塊的有關(guān)說明.
對知識的要求依次是了解、理解、掌握三個層次.
(1)了解:要求對所列知識的含義有初步的、感性的認(rèn)識,知道這一知識內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會)在 有關(guān)的問題中識別和認(rèn)識它.
這一層次所涉及的主要行為動詞有:了解,知道、識別,模仿,會求、會解等.
(2)理解:要求對所列知識內(nèi)容有較深刻的理性認(rèn)識,知道知識間的邏輯關(guān)系,能夠?qū)λ兄R做正確的描述說明并用數(shù)學(xué)語言表達(dá),能夠利用所學(xué)的知識內(nèi)容對有關(guān)問題進(jìn)行比較、判別、討論,具備利用所學(xué)知識解決簡單問題的能力.
這一層次所涉及的主要行為動詞有:描述,說明,表達(dá),推測、想象,比較、判別,初步應(yīng)用等.
(3)掌握:要求能夠?qū)λ械闹R內(nèi)容進(jìn)行推導(dǎo)證明,能夠利用所學(xué)知識對問題進(jìn)行分析、研究、討論,并且加以解決.
這一層次所涉及的主要行為動詞有:掌握、導(dǎo)出、分析,推導(dǎo)、證明,研究、討論、運(yùn)用、解決問題等.
2.能力要求
能力是指空間想象能力、抽象概括能力、推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識和創(chuàng)新意識.
(1)空間想象能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中的基本元素及其相互關(guān)系;能對圖形進(jìn)行分解、組合;會運(yùn)用圖形與圖表等手段形象地揭示問題的本質(zhì).
空間想象能力是對空間形式的觀察、分析、抽象的能力,主要表現(xiàn)為識圖、畫圖和對圖形的想象能力.識圖是指觀察研究所給圖形中幾何元素之間的相互關(guān)系;畫圖是指將文字語言和符號語言轉(zhuǎn)化為圖形語言以及對圖形添加輔助圖形或?qū)D形進(jìn)行各種變換;對圖形 的想象主要包括有圖想圖和無圖想圖兩種,是空間想象能力高層次的標(biāo)志.
(2)抽象概括能力:抽象是指舍棄事物非本質(zhì)的屬性,揭示其本質(zhì)的屬性;概括是指把僅僅屬于某一類對象的共同屬性區(qū)分出來的思維過程.抽象和概括是相互聯(lián)系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎(chǔ)上得出某種觀點(diǎn)或某個結(jié)論.
抽象概括能力是對具體的、生動的實(shí)例,在抽象概括的過程中,發(fā)現(xiàn)研究對象的本質(zhì);從給定的大量信息材料中概括出一些結(jié)論,并能將其應(yīng)用于解決問題或做出新的判斷.
(3)推理論證能力:推理是思維的基本形式之一,它由前提和結(jié)論兩部分組成;論證是由已有的正確的前提到被論證的結(jié)論的一連串的推理過程.推理既包括演繹推理,也包括合情推理;論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運(yùn)用合情推理進(jìn)行猜想,再運(yùn)用演繹推理進(jìn)行證明.
中學(xué)數(shù)學(xué)的推理論證能力是根據(jù)已知的事實(shí)和已獲得的正確數(shù)學(xué)命題,論證某一數(shù)學(xué)命題真實(shí)性的初步的推理能力.
(4)運(yùn)算求解能力:會根據(jù)法則、公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理,能根據(jù)問題的條件尋找與設(shè)計合理、簡捷的運(yùn)算途徑,能根據(jù)要求對數(shù)據(jù)進(jìn)行估計和近似計算.
運(yùn)算求解能力是思維能力和運(yùn)算技能的結(jié)合.運(yùn)算包括對數(shù)字的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等.運(yùn)算能力包括分析運(yùn)算條件、探究運(yùn)算方向、選擇運(yùn)算公式、確定運(yùn)算程序等一系列過程中的思維能力,也包括在實(shí)施運(yùn)算過程中遇到障礙而調(diào)整運(yùn)算的能力.
(5)數(shù)據(jù)處理能力:會收集、整理、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對研究問題有用的信息,并做出判斷.
數(shù)據(jù)處理能力主要依據(jù)統(tǒng)計或統(tǒng)計案例中的方法對數(shù)據(jù)進(jìn)行整理、分析,并解決給定的實(shí)際問題.
(6)應(yīng)用意識:能綜合應(yīng)用所學(xué)數(shù)學(xué)知識、思想和方法解決問題, 包括解決相關(guān)學(xué)科、生產(chǎn)、生活中簡單的數(shù)學(xué)問題;能理解對問題陳述 的材料,并對所提供的信息資料進(jìn)行歸納、整理和分類,將實(shí)際問題抽象為數(shù)學(xué)問題;能應(yīng)用相關(guān)的數(shù)學(xué)方法解決問題進(jìn)而加以驗(yàn)證,并能用數(shù)學(xué)語言正確地表達(dá)和說明.應(yīng)用的主要過程是依據(jù)現(xiàn)實(shí)的生活背景, 提煉相關(guān)的數(shù)量關(guān)系,將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題,構(gòu)造數(shù)學(xué)模型,并加以解決.
(7)創(chuàng)新意識:能發(fā)現(xiàn)問題、提出問題,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識、思想方法,選擇有效的方法和手段分析信息,進(jìn)行獨(dú)立的思考、探索和研究,提出解決問題的思路,創(chuàng)造性地解決問題.
創(chuàng)新意識是理性思維的高層次表現(xiàn).對數(shù)學(xué)問題的“觀察、猜測、 抽象、概括、證明”,是發(fā)現(xiàn)問題和解決問題的重要途徑,對數(shù)學(xué)知識的遷移、組合、融會的程度越高,顯示出的創(chuàng)新意識也就越強(qiáng).
3.個性品質(zhì)要求
個性品質(zhì)是指考生個體的情感、態(tài)度和價值觀.要求考生具有一定的數(shù)學(xué)視野,認(rèn)識數(shù)學(xué)的科學(xué)價值和人文價值,崇尚數(shù)學(xué)的理性精神, 形成審慎的思維習(xí)慣,體會數(shù)學(xué)的美學(xué)意義.
要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時間,以實(shí)事求是的科學(xué)態(tài)度解答試題,樹立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神.
4.考查要求
數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些 聯(lián)系,進(jìn)而通過分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu).
(1) 對數(shù)學(xué)基礎(chǔ)知識的考查,既要全面又要突出重點(diǎn).對于支撐學(xué)科知識體系的重點(diǎn)內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學(xué)試卷的主體.注重學(xué)科的內(nèi)在聯(lián)系和知識的綜合性,不刻意追求知識的覆蓋面.從學(xué)科的整體高度和思維價值的高度考慮問題,在知識網(wǎng)絡(luò)的交匯點(diǎn)處設(shè)計 試題,使對數(shù)學(xué)基礎(chǔ)知識的考查達(dá)到必要的深度.
(2) 對數(shù)學(xué)思想方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學(xué)知識相結(jié)合,通過對數(shù)學(xué)知識的考 查,反映考生對數(shù)學(xué)思想方法的掌握程度.
(3) 對數(shù)學(xué)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識為 載體,從問題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料, 側(cè)重體現(xiàn)對知識的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,以此來檢測考生將知識遷移到不同情境中去的能力,從而檢測出考生個體理性思維的廣度和深度以及進(jìn)一步學(xué)習(xí)的潛能.
對能力的考查要全面,強(qiáng)調(diào)綜合性、應(yīng)用性,并要切合考生實(shí)際.對推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點(diǎn),強(qiáng)調(diào)其科學(xué)性、嚴(yán)謹(jǐn)性、抽象性;對空間想象能力的考查主要體現(xiàn)在對文字語言、符號語言及圖形語言的互相轉(zhuǎn)化上;對運(yùn)算求解能力的 考查主要是對算法和推理的考查,考查以代數(shù)運(yùn)算為主;對數(shù)據(jù)處理能力的考查主要是考查運(yùn)用概率統(tǒng)計的基本方法和思想解決實(shí)際問 題的能力.
(4) 對應(yīng)用意識的考查主要采用解決應(yīng)用問題的形式.命題時要堅持“貼近生活,背景公平,控制難度”的原則,試題設(shè)計要切合中學(xué)數(shù)學(xué)教學(xué)的實(shí)際和考生的年齡特點(diǎn),并結(jié)合實(shí)踐經(jīng)驗(yàn),使數(shù)學(xué)應(yīng)用問題的難度符合考生的水平.
(5) 對創(chuàng)新意識的考查是對高層次理性思維的考查.在考試中創(chuàng)設(shè)新穎的問題情境,構(gòu)造有一定深度和廣度的數(shù)學(xué)問題時,要注重問題的多樣化,體現(xiàn)思維的發(fā)散性;精心設(shè)計考查數(shù)學(xué)主體內(nèi)容、體現(xiàn)數(shù)學(xué) 素質(zhì)的試題;也要有反映數(shù)、形運(yùn)動變化的試題以及研究型、探索型、開 放型等類型的試題.
數(shù)學(xué)科的命題,在考查基礎(chǔ)知識的基礎(chǔ)上,注重對數(shù)學(xué)思想方法的 考查,注重對數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價值和人文價值,同時兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實(shí)性,重視試題間的層次性,合理調(diào)控綜合程度,堅持多角度、多層次的考查,努力實(shí)現(xiàn)全面考查綜合數(shù)學(xué)素 養(yǎng)的要求.
二、考試范圍與要求
本部分包括必考內(nèi)容和選考內(nèi)容兩部分.必考內(nèi)容為《課程標(biāo)準(zhǔn)》 的必修內(nèi)容和選修系列2的內(nèi)容;選考內(nèi)容為《課程標(biāo)準(zhǔn)》的選修系列 4的“幾何證明選講”、“坐標(biāo)系與參數(shù)方程”、“不等式選講”等3個 專題.
(一)必考內(nèi)容與要求
1.集合
(1) 集合的含義與表示
①了解集合的含義、元素與集合的屬于關(guān)系.
②能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題.
(2) 集合間的基本關(guān)系
?、倮斫饧现g包含與相等的含義,能識別給定集合的子集.
?、谠诰唧w情境中,了解全集與空集的含義.
(3) 集合的基本運(yùn)算
①理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集 與交集.
?、诶斫庠诮o定集合中一個子集的補(bǔ)集的含義,會求給定子集 的補(bǔ)集.
?、勰苁褂庙f恩(Verm)圖表達(dá)集合的關(guān)系及運(yùn)算.
2.函數(shù)概念與基本初等函數(shù)I (指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù))
(1) 函數(shù)
?、倭私鈽?gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念.
②在實(shí)際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖像法、 列表法、解析法)表示函數(shù).
③了解簡單的分段函數(shù),并能簡單應(yīng)用.
?、芾斫夂瘮?shù)的單調(diào)性、最大值、最小值及其幾何意義;結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義.
?、輹\(yùn)用函數(shù)圖像理解和研究函數(shù)的性質(zhì).
(2) 指數(shù)函數(shù)
①了解指數(shù)函數(shù)模型的實(shí)際背景.
?、诶斫庥欣碇笖?shù)冪的含義,了解實(shí)數(shù)指數(shù)冪的意義,掌握冪的運(yùn)算.
③理解指數(shù)函數(shù)的概念,理解指數(shù)函數(shù)的單調(diào)性,掌握指數(shù)函數(shù) 圖像通過的特殊點(diǎn).
④知道指數(shù)函數(shù)是一類重要的函數(shù)模型.
(3) 對數(shù)函數(shù)
?、倮斫鈱?shù)的概念及其運(yùn)算性質(zhì),知道用換底公式能將一般對數(shù) 轉(zhuǎn)化成自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運(yùn)算中的作用.
?、诶斫鈱?shù)函數(shù)的概念,理解對數(shù)函數(shù)的單調(diào)性,掌握對數(shù)函數(shù) 圖像通過的特殊點(diǎn).
③知道對數(shù)函數(shù)是一類重要的函數(shù)模型.
?、芰私庵笖?shù)函數(shù)
與對數(shù)函數(shù)
互為反函數(shù)(a>0,且 a≠1 ).
(4) 冪函數(shù)
?、倭私鈨绾瘮?shù)的概念.
②結(jié)合函數(shù)
的圖像,了解它們的變化情況.
(5) 函數(shù)與方程
?、俳Y(jié)合二次函數(shù)的圖像,了解函數(shù)的零點(diǎn)與方程根的聯(lián)系,判斷 一元二次方程根的存在性及根的個數(shù).
?、诟鶕?jù)具體函數(shù)的圖像,能夠用二分法求相應(yīng)方程的近似解.
(6) 函數(shù)模型及其應(yīng)用
?、倭私庵笖?shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)的增長特征,知道直線上升、指數(shù)增長、對數(shù)增長等不同函數(shù)類型增長的含義.
?、诹私夂瘮?shù)模型(如指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在 社會生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用.
3.立體幾何初步
(1)空間幾何體
①認(rèn)識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些 特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).
②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述三視圖所表示的立體模型,會用斜二側(cè)法畫出它們的直觀圖.
?、蹠闷叫型队芭c中心投影兩種方法畫出簡單空間圖形的三視 圖與直觀圖,了解空間圖形的不同表示形式.
?、軙嬆承┙ㄖ锏囊晥D與直觀圖(在不影響圖形特征的基礎(chǔ) 上,尺寸、線條等不作嚴(yán)格要求).
?、萘私馇颉⒗庵?、棱錐、臺的表面積和體積的計算公式.
(2)點(diǎn)、直線、平面之間的位置關(guān)系
?、倮斫饪臻g直線、平面位置關(guān)系的定義,并了解如下可以作為推 理依據(jù)的公理和定理.
•公理1 :如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線上 所有的點(diǎn)都在此平面內(nèi).
•公理2:過不在同一條直線上的三點(diǎn),有且只有一個平面.
•公理3:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線.
•公理4:平行于同一條直線的兩條直線互相平行.
•定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補(bǔ).
?、谝粤Ⅲw幾何的上述定義、公理和定理為出發(fā)點(diǎn),認(rèn)識和理解空 間中線面平行、垂直的有關(guān)性質(zhì)與判定定理.
理解以下判定定理.
•如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行.
•如果一個平面內(nèi)的兩條相交直線與另一個平面都平行,那么這兩個平面平行.
•如果一條直線與一個平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直.
•如果一個平面經(jīng)過另一個平面的垂線,那么這兩個平面互相垂直.
理解以下性質(zhì)定理,并能夠證明.
•如果一條直線與一個平面平行,那么經(jīng)過該直線的任一個平面與此平面的交線和該直線平行.
•如果兩個平行平面同時和第三個平面相交,那么它們的交線相互平行.
•垂直于同一個平面的兩條直線平行.
•如果兩個平面垂直,那么一個平面內(nèi)垂直于它們交線的直線與另一個平面垂直.
?、勰苓\(yùn)用公理、定理和已獲得的結(jié)論證明一些空間圖形的位置關(guān)系的簡單命題.
4.平面解析幾何初步
(1) 直線與方程
?、僭谄矫嬷苯亲鴺?biāo)系中,結(jié)合具體圖形,確定直線位置的幾 何要素.
?、诶斫庵本€的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線斜率的計算公式.
?、勰芨鶕?jù)兩條直線的斜率判定這兩條直線平行或垂直.
④掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點(diǎn) 斜式、兩點(diǎn)式及一般式),了解斜截式與一次函數(shù)的關(guān)系.
?、菽苡媒夥匠探M的方法求兩條相交直線的交點(diǎn)坐標(biāo).
⑥掌握兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,會求兩條平行直線間的距離.
(2) 圓與方程
?、僬莆沾_定圓的幾何要素,掌握圓的標(biāo)準(zhǔn)方程與一般方程.
?、谀芨鶕?jù)給定直線、圓的方程判斷直線與圓的位置關(guān)系;能根據(jù)給定兩個圓的方程判斷兩圓的位置關(guān)系.
?、勰苡弥本€和圓的方程解決一些簡單的問題.
?、艹醪搅私庥么鷶?shù)方法處理幾何問題的思想.
(3) 空間直角坐標(biāo)系
①了解空間直角坐標(biāo)系,會用空間直角坐標(biāo)表示點(diǎn)的位置.
②會推導(dǎo)空間兩點(diǎn)間的距離公式.
5.算法初步
(1)算法的含義、程序框圖
①了解算法的含義,了解算法的思想.
②理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán).
(2)基本算法語句
理解幾種基本算法語句——輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句的含義.
6.統(tǒng)計
(1) 隨機(jī)抽樣
?、倮斫怆S機(jī)抽樣的必要性和重要性.
?、跁煤唵坞S機(jī)抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法.
(2) 用樣本估計總體
?、倭私夥植嫉囊饬x和作用,會列頻率分布表,會畫頻率分布直方圖、頻率折線圖、莖葉圖,理解它們各自的特點(diǎn).
?、诶斫鈽颖緮?shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,會計算數(shù)據(jù)標(biāo)準(zhǔn)差.
?、勰軓臉颖緮?shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并給出合理的解釋.
?、軙脴颖镜念l率分布估計總體分布,會用樣本的基本數(shù)字特征估計總體的基本數(shù)字特征,理解用樣本估計總體的思想.
⑤會用隨機(jī)抽樣的基本方法和樣本估計總體的思想解決一些簡單的實(shí)際問題.
(3) 變量的相關(guān)性
?、贂鲀蓚€有關(guān)聯(lián)變量的數(shù)據(jù)的散點(diǎn)圖,會利用散點(diǎn)圖認(rèn)識變量間的相關(guān)關(guān)系.
?、诹私庾钚《朔ǖ乃枷?,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程.
7.概率
(1)事件與概率
①了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別.
?、诹私鈨蓚€互斥事件的概率加法公式.
(2) 古典概型
?、倮斫夤诺涓判图捌涓怕视嬎愎?
?、跁嬎阋恍╇S機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率.
(3) 隨機(jī)數(shù)與幾何概型
?、倭私怆S機(jī)數(shù)的意義,能運(yùn)用模擬方法估計概率.
?、诹私鈳缀胃判偷囊饬x.
8.基本初等函數(shù)n (三角函數(shù))
(1) 任意角的概念、弧度制
①了解任意角的概念.
?、诹私饣《戎频母拍睿苓M(jìn)行弧度與角度的互化.
(2) 三角函數(shù)
?、倮斫馊我饨侨呛瘮?shù)(正弦、余弦、正切)的定義.
?、谀芾脝挝粓A中的三角函數(shù)線推導(dǎo)出±α,π±α的正弦、余弦、正切的誘導(dǎo)公式,能畫出y = sin x,y = cos x,y = tan x的圖像,了解三角函數(shù)的周期性.
?、劾斫庹液瘮?shù)、余弦函數(shù)在區(qū)間[0,2π]上的性質(zhì)(如單調(diào)性、最大值和最小值以及與x軸的交點(diǎn)等),理解正切函數(shù)在區(qū)間
內(nèi)的單調(diào)性.
?、芾斫馔侨呛瘮?shù)的基本關(guān)系式:sin2 x +cos2 x= 1,
?、萘私夂瘮?shù)
的物理意義;能畫出
的圖像,了解參數(shù)
對函數(shù)圖像變化的影響.
?、蘖私馊呛瘮?shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會用三角函數(shù)解決一些簡單實(shí)際問題.