高二數學學習指導:充分與必要條件的判斷方法
高二數學學習指導:充分與必要條件的判斷方法
小編寄語:充分與必要條件考查學生的邏輯能力且經常與其他的題結合在一起考查,那么我們該如何判斷充分與必要條件。小編為你提供判斷充分與必要條件的常用方法,希望對大家有幫助。
一、 定義法
對于“?圯”,可以簡單的記為箭頭所指為必要,箭尾所指為充分.在解答此類題目時,利用定義直接推導,一定要抓住命題的條件和結論的四種關系的定義.
例1 已知p:-2
分析 條件p確定了m,n的范圍,結論q則明確了方程的根的特點,且m,n作為系數,因此理應聯想到根與系數的關系,然后再進一步化簡.
解 設x1,x2是方程x2+mx+n=0的兩個小于1的正根,即0
而對于滿足條件p的m=-1,n=,方程x2-x+=0并無實根,所以pq.
綜上,可知p是q的必要但不充分條件.
點評 解決條件判斷問題時,務必分清誰是條件,誰是結論,然后既要嘗試由條件能否推出結論,也要嘗試由結論能否推出條件,這樣才能明確做出充分性與必要性的判斷.
二、 集合法
如果將命題p,q分別看作兩個集合A與B,用集合意識解釋條件,則有:①若A?哿B,則x∈A是x∈B的充分條件,x∈B是x∈A的必要條件;②若A?芴B,則x∈A是x∈B的充分不必要條件,x∈B是x∈A的必要不充分條件;③若A=B,則x∈A和x∈B互為充要條件;④若A?芫B且A?蕓B,則x∈A和x∈B互為既不充分也不必要條件.
例2 設x,y∈R,則x2+y2<2是|x|+|y|≤的()條件,是|x|+|y|<2的()條件.
A. 充要條件 B. 既非充分也非必要條件
C. 必要不充分條件?搖D. 充分不必要條件
解 如右圖所示,平面區(qū)域P={(x,y)|x2+y2<2}表示圓內部分(不含邊界);平面區(qū)域Q={(x,y)||x|+|y|≤}表示小正方形內部分(含邊界);平面區(qū)域M={(x,y)||x|+|y|<2}表示大正方形內部分(不含邊界).
由于(,0)?埸P,但(,0)∈Q,則P?蕓Q.又P?芫Q,于是x2+y2<2是|x|+|y|≤的既非充分也非必要條件,故選B.
同理P?芴M,于是x2+y2<2是|x|+|y|<2的充分不必要條件,故選D.
點評 由數想形,以形輔數,這種解法正是數形結合思想在解題中的有力體現.數形結合不僅能夠拓寬我們的解題思路,而且也能夠提高我們的解題能力.
三、 篩選法
用特殊值、舉反例進行驗證,做出判斷,從而簡化解題過程.這種方法尤其適合于解選擇題.
例4 方程ax2+2x+1=0至少有一個負實根的充要條件是()
A. 0
解 利用特殊值驗證:當a=0時,x=-,排除A,D;當a=1時,x=-1,排除B.因此選C.
點評 作為選擇題,利用篩選法避免了復雜的邏輯推理過程,使解題方法更加優(yōu)化,節(jié)省了時間,提高了解題的速度,因此同學們應該注意解題方法的選擇使用.
四、 逆否法
利用互為逆否命題的等價關系,應用“正難則反”的數學思想,將判斷“p?圯q”轉化為判斷“非q?圯非p”的真假.
例3 (1)判斷p:x≠3且y≠2是q:x+y≠5的什么條件;
(2) 判斷p:x≠3或y≠2是q:x+y≠5的什么條件.
解 (1)原命題等價于判斷非q:x+y=5是非p:x=3或y=2的什么條件.
顯然非p非q,非q非p,故p是q的既不充分也不必要條件.
(2) 原命題等價于判斷非q:x+y=5是非p:x=3且y=2的什么條件.
因為非p?圯非q,但非q非p,故p是q的必要不充分條件.
點評 當命題含有否定詞時,可考慮通過逆否命題等價轉化判斷.
五、 傳遞法
充分條件與必要條件具有傳遞性,即由P1?圯P2,P2?圯P3,…,Pn-1?圯Pn,可得P1?圯Pn .同樣,充要條件也有傳遞性.對于比較復雜的具有一定連鎖關系的條件,兩個條件間關系的判斷也可用傳遞法來加以處理.
例5 已知p是r的充分不必要條件,s是r的必要條件,q是s的必要條件,那么p是q的()
A. 充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
解 由題意可得p?圯r,r?圯s,s?圯q,那么可得p?圯r?圯s?圯q,即p是q的充分不必要條件,故選A.
點評 對于兩個以上的較復雜的連鎖式條件,利用傳遞性結合符號“?圯”與“”,畫出它們之間的關系結構圖進行判斷,可以直觀快捷地處理問題,使問題得以簡單化.
1. 求三個方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一個方程有實根的充要條件.
1. 三個方程均無實根的充要條件是
Δ1=16a2-4(-4a+3)<0,Δ2=(a-1)2-4a2<0,Δ3=4a2-4(-2a)<0,解得-