特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

高二數(shù)學上復習資料總結

時間: 鳳婷983 分享

  高二數(shù)學的復習至關重要,下面是學習啦小編給大家?guī)淼母叨?shù)學上復習資料總結,希望對你有幫助。

  高二數(shù)學上復習資料

  一、不等式的性質(zhì)

  1.兩個實數(shù)a與b之間的大小關系

  2.不等式的性質(zhì)

  (4)(乘法單調(diào)性)

  3.絕對值不等式的性質(zhì)

  (2)如果a>0,那么

  (3)|a?b|=|a|?|b|.

  (5)|a|-|b|≤|a±b|≤|a|+|b|.

  (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

  二、不等式的證明

  1.不等式證明的依據(jù)

  (2)不等式的性質(zhì)(略)

  (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

 ?、赼2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)

  2.不等式的證明方法

  (1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

  用比較法證明不等式的步驟是:作差——變形——判斷符號.

  (2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

  (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

  證明不等式除以上三種基本方法外,還有反證法、數(shù)學歸納法等.

  三、《立體幾何》

  點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。

  垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。

  方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

  立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。

  異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。

  四、《平面解析幾何》

  有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標,數(shù)形結合稱典范。

  笛卡爾的觀點對,點和有序實數(shù)對,兩者—一來對應,開創(chuàng)幾何新途徑。

  兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。

  三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。

  四件工具是法寶,坐標思想?yún)?shù)好;平面幾何不能丟,旋轉變換復數(shù)求。

  解析幾何是幾何,得意忘形學不活。圖形直觀數(shù)入微,數(shù)學本是數(shù)形學

  五、《復數(shù)》

  虛數(shù)單位i一出,數(shù)集擴大到復數(shù)。一個復數(shù)一對數(shù),橫縱坐標實虛部。

  對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

  箭桿的長即是模,常將數(shù)形來結合。代數(shù)幾何三角式,相互轉化試一試。

  代數(shù)運算的實質(zhì),有i多項式運算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。

  一些重要的結論,熟記巧用得結果。虛實互化本領大,復數(shù)相等來轉化。

  利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,

  減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。

  三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

  輻角運算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,

  兩個不會為實數(shù),比較大小要不得。復數(shù)實數(shù)很密切,須注意本質(zhì)區(qū)別。

  六、平方關系:

  sin^2α+cos^2α=1

  1+tan^2α=sec^2α

  1+cot^2α=csc^2α

  七、積的關系:

  sinα=tanα×cosα

  cosα=cotα×sinα

  tanα=sinα×secα

  cotα=cosα×cscα

  secα=tanα×cscα

  cscα=secα×cotα

  八、倒數(shù)關系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  高中數(shù)學學習方法

  (1)記數(shù)學筆記,特別是對概念理解的不同側面和數(shù)學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

  (2)建立數(shù)學糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

  (3)熟記一些數(shù)學規(guī)律和數(shù)學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。

  (4)經(jīng)常對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,使知識結構一目了然;經(jīng)常對習題進行類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問題歸納于同一知識方法。

  (5)閱讀數(shù)學課外書籍與報刊,參加數(shù)學學科課外活動與講座,多做數(shù)學課外題,加大自學力度,拓展自己的知識面。

  (6)及時復習,強化對基本概念知識體系的理解與記憶,進行適當?shù)姆磸挽柟蹋麥缜皩W后忘。

  (7)學會從多角度、多層次地進行總結歸類。如:①從數(shù)學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統(tǒng)化、條理化、專題化、網(wǎng)絡化。

  (8)經(jīng)常在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數(shù)學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。

  (9)無論是作業(yè)還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數(shù)學的重要問題。
看了“高二數(shù)學上復習資料總結”的人還看了:

1.高二上學期數(shù)學復習知識點歸納

2.高二上數(shù)學知識點總結

3.高二數(shù)學期末復習提綱

4.高二數(shù)學復習知識點

5.高二數(shù)學數(shù)列極限知識點總結

6.高二數(shù)學學習總結

7.高二數(shù)學數(shù)列專題復習資料

高二數(shù)學上復習資料總結

高二數(shù)學的復習至關重要,下面是學習啦小編給大家?guī)淼母叨?shù)學上復習資料總結,希望對你有幫助。 高二數(shù)學上復習資料 一、不等式的性質(zhì) 1.兩個實數(shù)a與b之間的大小關系 2.不等式的性質(zhì) (4)(乘法單調(diào)性) 3.絕對值不等式的性質(zhì) (2)如果a0
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高二數(shù)學選修2-1第三章空間向量的數(shù)量積運算知識點
    高二數(shù)學選修2-1第三章空間向量的數(shù)量積運算知識點

    高二數(shù)學向量的數(shù)量積是《向量》這一章的重要內(nèi)容,下面是學習啦小編給大家?guī)淼母叨?shù)學選修2-1第三章空間向量的數(shù)量積運算知識點,希望對你有幫

  • 人教版高二數(shù)學上向量的三角形不等式歸納
    人教版高二數(shù)學上向量的三角形不等式歸納

    向量在高中數(shù)學教學中具有較強的實用性,下面是學習啦小編給大家?guī)淼娜私贪娓叨?shù)學上向量的三角形不等式歸納,希望對你有幫助。 高二數(shù)學向量的

  • 數(shù)學必修4向量公式歸納
    數(shù)學必修4向量公式歸納

    在數(shù)學中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小(magnitude)和方向的量,它可以形象化地表示為帶箭頭的線段。下面學習啦小編給大家?guī)?/p>

  • 數(shù)學必修四三角函數(shù)誘導公式
    數(shù)學必修四三角函數(shù)誘導公式

    三角函數(shù)誘導公式是高中數(shù)學三角函數(shù)部分的重要公式,下面是學習啦小編給大家?guī)淼臄?shù)學必修四三角函數(shù)誘導公式,希望對你有幫助。 高中數(shù)學三角函

2652508