高中必修4數(shù)學知識點平面向量相關知識點
數(shù)學在科學發(fā)展和現(xiàn)代生活生產中的應用非常廣泛,下面是學習啦小編給大家?guī)淼母咧斜匦?數(shù)學知識點平面向量相關知識點,希望對你有幫助。
高中數(shù)學知識點平面向量知識點
1、數(shù)量與向量的區(qū)別:
數(shù)量只有大小,是一個代數(shù)量,可以進行代數(shù)運算、比較大小;
向量有方向,大小,雙重性,不能比較大小.
2.向量的表示方法:
?、儆糜邢蚓€段表示;
?、谟米帜竌、b
(黑體,印刷用)等表示;
③用有向線段的起點與終點字母: ;
?、芟蛄?的大小――長度稱為向量的模,記作| |.
3.有向線段:具有方向的線段就叫做有向線段,三個要素:起點、方向、長度.
向量與有向線段的區(qū)別:
(1)向量只有大小和方向兩個要素,與起點無關,只要大小和方向相同,則這兩個向量就是相同的向量;
(2)有向線段有起點、大小和方向三個要素,起點不同,盡管大小和方向相同,也是不同的有向線段.
4、零向量、單位向量概念:
?、匍L度為0的向量叫零向量,記作0. 0的方向是任意的.
注意0與0的含義與書寫區(qū)別.
?、陂L度為1個單位長度的向量,叫單位向量.
說明:零向量、單位向量的定義都只是限制了大小.
5、平行向量定義:
①方向相同或相反的非零向量叫平行向量;②我們規(guī)定0與任一向量平行.
說明:(1)綜合①、②才是平行向量的完整定義;(2)向量a、b、c平行,記作a∥b∥c.
6、相等向量定義:
長度相等且方向相同的向量叫相等向量.
說明:(1)向量a與b相等,記作a=b;(2)零向量與零向量相等;
(3)任意兩個相等的非零向量,都可用同一條有向線段來表示,并且與有向線段的起點無關.
7、共線向量與平行向量關系:
平行向量就是共線向量,這是因為任一組平行向量都可移到同一直線上(與有向線段的起點無關).
說明:(1)平行向量可以在同一直線上,要區(qū)別于兩平行線的位置關系;(2)共線向量可以相互平行,要區(qū)別于在同一直線上的線段的位置關系.