高二數(shù)學(xué)必修5不等式證明方法
基礎(chǔ)數(shù)學(xué)的知識(shí)與運(yùn)用是個(gè)人與團(tuán)體生活中不可或缺的一部分,下面是學(xué)習(xí)啦小編給大家?guī)?lái)的高二數(shù)學(xué)必修5不等式證明方法,希望對(duì)你有幫助。
一、不等式的性質(zhì)
1.兩個(gè)實(shí)數(shù)a與b之間的大小關(guān)系
2.不等式的性質(zhì)
(4) (乘法單調(diào)性)
3.絕對(duì)值不等式的性質(zhì)
(2)如果a>0,那么
(3)|a•b|=|a|•|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的證明
1.不等式證明的依據(jù)
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
?、赼2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號(hào).
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過(guò)的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.