八年級數(shù)學(xué)期末測試題
距離八年級數(shù)學(xué)期末考試還有不到一個月的時間了,在這段時間內(nèi)突擊做一些試題是非常有幫助的。下面小編給大家分享一些八年級數(shù)學(xué)期末測試題,大家快來跟小編一起欣賞吧。
八年級數(shù)學(xué)期末測試題
一、選擇題(本題共30分,每小題3分)
下列各題均有四個選項,其中只有一個是符合題意的.
1.若 是一次函數(shù),則
A. B. C. D.
2.若一個多邊形的內(nèi)角和是它的外角和的二倍,則這個多邊形是
A.三角形 B.四邊形 C.六邊形 D.八邊形
3.一元二次方程 的解是
A. B. C. D.
4. 下列條件中,不能判斷四邊形ABCD是平行四邊形的是
A. AB∥CD,AD∥BC B. AB=CD, AD∥BC
C. AB∥CD,AB=CD D. ∠A=∠C,∠B=∠D
5. 函數(shù) 中的自變量 的取值范圍是
A. B. C. D.
6. 某校組織數(shù)學(xué)學(xué)科競賽為參加區(qū)級比賽做選手選拔工作,經(jīng)過多次測試后,有四位同學(xué)成為晉級的候選人,具體情況如下表,如果從這四位同學(xué)中選出一名晉級(總體水平高且狀態(tài)穩(wěn)定)你會推薦
甲 乙 丙 丁
平均分 92 94 94 92
方 差 35 35 23 23
A. 甲 B.乙 C.丙 D.丁
7. 在等邊三角形、平行四邊形、矩形、菱形、正方形、等腰梯形六個幾何圖形中,既是中心對稱圖形又是軸對稱圖形的一共有
A.2個 B.3個 C.4個 D.5個
8.若關(guān)于 的一元二次的方程 有實數(shù)根, 則實數(shù) 的取值范圍是( )
A. B. C. 且 D. 且
9.為落實“陽光體育”健身行動,本區(qū)將開展一次足球邀請賽,參賽的每兩個隊之間都要比賽一場,賽程計劃安排7天,每天安排4場比賽.若應(yīng)邀請x個隊參賽,則x滿足的關(guān)系式為( )
A. B. C. D.
10. 如圖,正方形ABCD的邊長為4,P為正方形邊上一動點,運(yùn)動路線是A→D→C→B→A,設(shè)P點經(jīng)過的路線為x,以點A、P、D為頂點的三角形的面積是y.則下列圖象能大致反映y與x的函數(shù)關(guān)系的是( )
二、填空題(本題共18分,每小題3分)
11.點B(2,-3)關(guān)于x軸對稱的點 的坐標(biāo)是_________________.
12.若一元二次方程 有兩個相等的實數(shù)根,請寫出一組滿足條件的的b、c的取值,則b=________;c=_____________.
13. 如圖,菱形ABCD的周長為16,∠ABC=120°,則AC的長為____________.
14.將一次函數(shù) 的圖象沿y軸向上平移三個單位,則平移后的的表達(dá)式為________.
15. 如圖,正方形ABCD和正方形CEFG中,
點D在CG上,BC=1,CE=3,H是AF的中點,
那么CH的長是_____________.
16.在學(xué)習(xí)完一次函數(shù)的圖象一課后,老師布置了一道作業(yè)題,要求作出 的圖像,小明完成后說出了自己的做法:“我按照做函數(shù)圖像的步驟,分別列出了x、y的五個以上的對應(yīng)值,然后描點、連線就完成了此圖像……”;
小亮聽后說:“小明,你的做法太繁瑣了,老師剛才已經(jīng)講過了,只要找到x、y的兩個對應(yīng)值,描點、連線即可……”
請你結(jié)合小亮說的話分析一下作一次函數(shù)圖像蘊(yùn)含的道理:
_____________________________________
三、解答題(本題共72分,14道小題,17題3分,18~27小題各5分,28題4分,
29題8分,30題7分)
17.點 在第二象限,求出a的取值范圍.
18. 用配方法解方程: .
19. 用求根公式法解方程: .
20. 用適當(dāng)?shù)姆椒ń夥匠蹋?.
21. 如圖是某種蠟燭在燃燒過程中高度與時間之間關(guān)系的圖像,由圖像解答下列問題:
(1)求蠟燭在燃燒過程中
高度y與時間x之間的函數(shù)表達(dá)式;
(2)經(jīng)過多少小時蠟燭燃燒完畢?
22. 如圖,在菱形ABCD中,∠B=60°,AB=1,延長AD到點E,使DE=AD,延長CD到點F,使DF=CD,連接AC、CE、EF、AF.
(1)求證:四邊形ACEF是矩形;
(2)求四邊形ACEF的周長.
23.為了了解某中學(xué)初中二年級150名男學(xué)生的身體發(fā)育情況,從中對20名男學(xué)生的身高進(jìn)行了測量,結(jié)果如下:(單位:厘米)
175 161 171 176 167 181 161 173 171 177 179 172 165 157 173 173 166 177 169 181
圖1是根據(jù)上述數(shù)據(jù)填寫的頻率分布表的一部分:
(1)請?zhí)顚懕碇形赐瓿傻牟糠?
(2)樣本數(shù)據(jù)中,男生身高的中位數(shù)是 厘米;
(3) 該校初中二年級男學(xué)生身高在171.5---176.5(厘米)范圍內(nèi)的人數(shù)為 人;請在右面的坐標(biāo)系用頻數(shù)分布直方圖的形式將此范圍內(nèi)的學(xué)生人數(shù)表示出來.
分組 頻數(shù) 頻率
156.5~161.5 3 0.15
161.5~166.5 2 0.10
166.5~171.5 4
171.5~176.5 0.30
176.5~181.5
合計
20 1.00
24. 已知關(guān)于x的方程
(1)若該方程的一個根為1,求a的值;
(2)求證:不論a取任何實數(shù),該方程總有兩個不相等的實數(shù)根.
25. 如圖,已知四邊形ABCD是平行四邊形,P、Q是對角線BD上的兩個點,請在題目中添加合適的條件,就可以證明:AP=CQ
(1)你添加的條件是 ;
(2)請你根據(jù)題目中的條件和你添加的條件證明AP=CQ.
26. 在平面直角坐標(biāo)系內(nèi)有一平行四邊形點O(0,0),A(4,0) ,B(5,2),C(1,2),
有一次函數(shù) 的圖象過點P(6,1).
若此一次函數(shù)圖象經(jīng)過平行四邊形OA邊的中點,
求k的值;
若此一次函數(shù)圖象與平行四邊形OABC始終
有兩個交點,請求出k的取值范圍.
27.某商場某種商品平均每天可銷售30件,每件盈利50元. 由于換季問題,需要盡快減少庫存,該商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出 2件.據(jù)此規(guī)律,每件商品降價多少元時,商場日盈利可達(dá)到2100元?
28.在學(xué)習(xí)完一次函數(shù)的圖像及其性質(zhì)后,我們可以利用圖像上“數(shù)對”的一些特殊情況,來重新看待和它相關(guān)的一元一次方程、二元一次方程組的解,一元一次不等式(不等式組)的解集問題,下面是有關(guān)的描述:
圖1是一次函數(shù) 的圖象,由于當(dāng) 時, ,所以我們可以知道二元一次方程 一組解是 ;也可以得到一元一次方程 的解是, ;同時還可以得到不等式 的解集是 .
請嘗試用以上的內(nèi)在聯(lián)系通過觀察圖像解決如下問題:
(1)觀察圖1請直接寫出 時,x的取值范圍___________;
(2) 請通過觀察圖2直接寫出
的解集 ______________;
(3) 圖3給出了 以及 的圖象,請直接寫出
的解集_________________________.
29. 已知在四邊形ABCD中,點E、F分別是BC、CD邊上的一點.
(1)如圖1:當(dāng)四邊形ABCD是正方形時,作出將ΔADF繞點A順時針旋轉(zhuǎn)90度后的圖形ΔABM;并判斷點M、B、C三點是否在同一條直線上___________(填是或否);
(2)如圖1:當(dāng)四邊形ABCD是正方形時,且∠EAF=45 °,請直接寫出線段EF、BE、DF三者之間的數(shù)量關(guān)系___________________ ;
(3) 如圖2:當(dāng)AB=AD, ∠B=∠D=90°,∠EAF是∠BAD的一半,
問:(2)中的數(shù)量關(guān)系是否還存在,并說明理由;
(4)在(3)的條件下,將點E平移到BC的延長線上,請在圖3中補(bǔ)全圖形,并寫出
EF、BE、DF的關(guān)系.
30.如果關(guān)于 的一元二次方程 有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”,研究發(fā)現(xiàn)了此類方程的一般性結(jié)論:設(shè)其中一根為 ,則另一個根為 ,因此 ,所以有 ;我們記“ ”即 時,方程 為倍根方程;下面我們根據(jù)此結(jié)論來解決問題:
(1)方程① ;方程② 這兩個方程中,是倍根方程的是
______________(填序號即可);
(2)若 是倍根方程,求 的值;
(3)關(guān)于x的一元二次方程 ( )是倍根方程,且點 在一次函數(shù) 的圖像上,求此倍根方程的表達(dá)式.
八年級數(shù)學(xué)期末測試題參考答案
一、選擇題(本題共30分,每小題3分)
題號 1 2 3 4 5 6 7 8 9 10
答案 C C C B A C B C A B
二、填空題(本題共18分,每小題3分)
題號 11 12 13 14 15 16
答案 滿足 即可
例: 一次函數(shù)圖像是一條直線
兩點確定一條直線
三、解答題(本題共72分,14道小題,17題3分,18~27小題各5分,28題4分,
29題8分,30題7分)
17.解:根據(jù)題意列不等式組得:
………………………………………………………………………2分
解得: ………………………………………………………………………3分
18.解:
……………………………………………1分
……………………………………………2分
……………………………………………3分
……………………………………………4分
∴此方程的解為: . …………………………5分
19.原方程整理得:
∵
∴ ……………………………2分
∴ ……………………………4分
∴原方程的解為: ……………………………5分
20.解:
……………………………2分
∴ 或 ……………………………4分
∴原方程的解為: . ……………………………5分
21.解:(1)由圖象可知過 兩點 ……………………………1分
設(shè)一次函數(shù)表達(dá)式為
∴ ……………………………2分
解得
∴此一次函數(shù)表達(dá)式為: . ……………………………3分
(2)令
∴ ……………………………4分
解得:
答:經(jīng)過 小時蠟燭燃燒完畢. ……………………………5分
22. 解:(1)∵DE=AD,DF=CD,
∴四邊形ACEF是平行四邊形,[………………………………………………………………1分
∵四邊形ABCD為菱形,
∴AD=CD,
∴AE=CF,
∴四邊形ACEF是矩形, [………………………………………………………………2分
(2)∵△ACD是等邊三角形,
∴AC=1,[
∴EF=AC=1, [……………………………………………………………3分
過點D作DG⊥AF于點G,則AG=FG=AD×cos30°= ,
∴AF=CE=2AG= ,[ ………………………………………………………………4分
∴四邊形ACEF的周長為:AC+CE+EF+AF=1+ +1+ =2+2 . ………………5分
23.解:(1)每答對兩空得1分,共2分
分組 頻數(shù) 頻率
156.5~161.5 3 0.15
161.5~166.5 2 0.10
166.5~171.5 4 0.2
171.5~176.5 6 0.30
176.5~181.5 5 0.25
合計 20 1.00
………………………………………2分
(2)172.5 ………………………………………3分
(3)45人 ………………………………………4分
……………………………………5分
24.解(1):x2+ax+a﹣2=0
………………………………………1分
解得: ………………………………………2分
(2)證明: …………………3分
∵
∴
∴不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根 ………5分
25.(1)添加條件正確: ………………………………1分
(2)證明全等的過程正確 ………………………………4分
∴AP=CQ. ………………………………5分
26.解:(1)設(shè)OA的中點為M
∵O(0,0),A(4,0)
∴OA=4
∴OM=2
∴ ……………………1分
∵圖像過M、P兩點
∴
解得: ……………………2分
(2)當(dāng)圖象過B、P兩點時,代入表達(dá)式
得到:
解得: ……………………3分
當(dāng)圖象過A、P兩點時,代入表達(dá)式
得到:
解得: ……………………4分
所以
由于要滿足一次函數(shù)的存在性,所以 且 …………………5分
27. 設(shè)每件商品降價x元,根據(jù)題意得: ………………………………………1分
(50-x)(30+2x)=2100 ………………………………………3分
化簡得:x2-35x+300=0
解得:x1=15, x2=20 ………………………………………4分
∵該商場為了盡快減少庫存,則x=15不合題意,舍去. ∴x=20
答:每件商品降價20元,商場日盈利可達(dá)2100元. ……………………5分
28.(1) ……………………1分
(2) ……………………2分
(3) 或 ……………………4分
29.(1)作圖正確 …………………………………………………………………………1分
是 …………………………………………………………………………2分
(2) …………………………………………………………3分
(3)存在
理由如下:
延長CB到P使
證明 的過程正確 …………………………………………………4分
∵∠EAF=
∴∠BAE+∠DAF=∠EAF
∵∠BAP=∠FAD
∴∠BAP+∠FAD=∠EAF
即:∠EAP=∠FAE ………………………………………………………5分
證明 得到
∴ ………………………………………………………6分
(4)補(bǔ)全圖形正確 ………………………………………………………7分
結(jié)論: ………………………………………………………8分
30.(1)答案: ② ……………………………………2分
(2)整理 得:
∵ 是倍根方程
………………………………………………3分
∴ …………………………………………………4分
(3)∵ 是倍根方程
∴ ………………………………………………5分
整理得:
∵ 在一次函數(shù) 的圖像上
∴ …………………………………………………6分
∴
∴此方程的表達(dá)式為 …………………………………………7分
說明:若考生的解法與給出的解法不同,正確者可參照評分參考相應(yīng)給分.
八年級數(shù)學(xué)期末測試題相關(guān)文章: