八年級(jí)數(shù)學(xué)上冊(cè)期末試卷
通過(guò)做數(shù)學(xué)期末試卷復(fù)習(xí)題可以弄懂在課堂上沒(méi)有理解或沒(méi)有完全理解的問(wèn)題。小編整理了關(guān)于八年級(jí)數(shù)學(xué)上冊(cè)期末試卷,希望對(duì)大家有幫助!
八年級(jí)數(shù)學(xué)上冊(cè)期末試卷
一、選擇題(本題共30分,每小題3分)
下列各題均有四個(gè)選項(xiàng),其中只有一個(gè)是符合題意的.
1.2的 平方根是
A.± B. C.− D.4
2. 剪紙是中國(guó)最古老的民間藝術(shù)之一,是中華傳統(tǒng)文化中的一塊瑰寶.下列四個(gè)剪紙圖案中不是軸對(duì)稱圖形的是
A. B. C. D.
3.將3個(gè)紅球,2個(gè)白球裝在一個(gè)不透明的盒子里,這五個(gè)球除了顏色不同外其他均相同.如果從盒子中任摸出一個(gè)球,那么恰好摸到白球的可能性是
A. B. C. D.1
4. 已知一個(gè)三角形兩邊的長(zhǎng)分別為3和7,那么第三邊的邊長(zhǎng)可能是下列各數(shù)中的
A. 3 B.4 C.7 D.10
5. 在0, , , ,0.021021021…這五個(gè)數(shù)字中,無(wú)理數(shù)有
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
6.小麗做了一個(gè)畫角平分線的儀器(圖1),其中AB=AC,BD=DC.將儀器上的點(diǎn)A與∠PQR的頂點(diǎn)Q重合,調(diào)整AB 和AC的位置,使它們分別落在∠PQR的兩邊上,過(guò)點(diǎn)A、D的射
線就是∠PRQ的角平分線(圖2).此儀器的畫圖原理是:根據(jù)
儀器結(jié)構(gòu),可得△ABD≌△ACD,這樣就有∠BAD=∠CAD.其
中,△ABD≌△ACD的依據(jù)是
A.SAS B.ASA C.AAS D.SSS
7. 某校有19名同學(xué)參加了中學(xué)生規(guī)范漢字書寫大賽的初賽,他們的成績(jī)各不相同,在統(tǒng)計(jì)這些同學(xué)的成績(jī)后取前10名代表學(xué)校參加復(fù)賽.如果小新只知道自己的成績(jī),想判斷自己能否進(jìn)入復(fù)賽,那么他需要知道這組數(shù)據(jù)的
A.平均數(shù) B.中位數(shù) C.眾數(shù) D.頻數(shù)
8. 下列計(jì)算正確的是
A. B. C. D.
9.如圖,△ABC中,AC =3,BC =4,AB=5,BD平分∠ABC,如果
M、N分別為BD、BC上的動(dòng)點(diǎn),那么CM+MN的最小值是
A.2.4 B.3 C.4 D.4.8
10.如圖,直線 表示一條河,點(diǎn)M、N表示兩個(gè)村莊,計(jì)劃在 上的某處修建一個(gè)水泵向兩個(gè)村莊供水.在下面四種鋪設(shè)管道的方案中,所需管道最短的方案是(圖中實(shí)線表示鋪設(shè)的管道)
二、填空題(本題共18分,每小題3分)
11.如果二次根式 有意義,那么 x 的取值范圍是 .
12.如果將一副三角板按如圖方式疊放,那么∠1= .
13.已知x1 和 x2分別為方程 的兩個(gè)實(shí)數(shù)根,那么 x1+x2= ; .
14. 計(jì)算: .
15. “已知點(diǎn)P在直線 l 上 ,利用尺規(guī)作圖過(guò)點(diǎn)P作直線 PQ⊥l”的作圖方法如下:
?、僖渣c(diǎn) P 為圓心,以任意長(zhǎng)為半徑畫弧,交直線 l 于A、B兩點(diǎn);
?、诜謩e以A、B兩點(diǎn)為圓心,以大于 的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)Q;
?、圻B接PQ.則直線 PQ⊥l.請(qǐng)什么此方法依據(jù)的數(shù)學(xué)原理是
.
16. 中國(guó)古代的數(shù)學(xué)家們對(duì)于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位.尤其是三國(guó)時(shí)期的數(shù)學(xué)家趙爽,不僅最早對(duì)勾股定理進(jìn)行了證明,而且創(chuàng)制了“勾股圓方圖”,開創(chuàng)了“以形證數(shù)”的思想方法.在圖1中,小正方形ABCD的面積為1,如果把它的各邊分別延長(zhǎng)一倍得到正方形A1B1C1D1,則正方形A1B1C1D1的面積為 ;再把正方形A1B1C1D1的各邊分別延長(zhǎng)一倍得到正方形A2B2C2D2(如圖2),如此進(jìn)行下去,得到的正方形AnBnCnDn的面積為 (用含n的式子表示,n為正整數(shù)).
三、解答題(本題共30分,每題5分)
17.計(jì)算:
18.用配方法解一元二次方程:x2 + 6x = 9
19. (本題5分)從①∠B =∠C ②∠BAD =∠CDA ③AB =DC
④BE =CE四個(gè)等式中選出兩個(gè)作為條件,證明 是等
腰三角形(寫出一種即可).
20. 某調(diào)查小組采用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)我區(qū)部分初中生每天進(jìn)行課外閱讀的時(shí)間進(jìn)行了抽樣調(diào)查,將所得數(shù)據(jù)進(jìn)行整理后繪制成如下統(tǒng)計(jì)圖表,根據(jù)圖表中的信息回答下列問(wèn)題:
(1)該調(diào)查小組抽取的樣本容量是多少?
(2)分別補(bǔ)全兩個(gè)統(tǒng)計(jì)圖表;
(3)請(qǐng)估計(jì)我區(qū)初中生每天進(jìn)行課外閱讀的平均時(shí)間.
21.已知:關(guān)于x的一元二次方程 有兩個(gè)實(shí)數(shù)根.
(1)求k的取值范圍;
(2)如果k為正整數(shù),且該方程的兩個(gè)實(shí)根都是整數(shù),求k的值.
22. 對(duì)于正實(shí)數(shù)a、b,定義新運(yùn)算 .如果 ,求實(shí)數(shù)x的值.
四、解答題(本題共21分)
23. (本題5分)已知:關(guān)于 的一元二次方程 (m為實(shí)數(shù))的兩個(gè)實(shí)數(shù)根分別是△ABC的兩邊AB、AC的長(zhǎng),且第三邊BC的長(zhǎng)為5.當(dāng)m取何值時(shí),△ABC為直角三角形?
24.(本題5分)列方程解應(yīng)用題:
某校為開展開放性綜合實(shí)踐活動(dòng),計(jì)劃在校園內(nèi)靠墻用籬笆圍出一塊長(zhǎng)方形種植園地.已知離校墻10m的距離有一條平行于墻的甬路,如果籬笆的長(zhǎng)度是40m ,種植園地的面積是198 m2,那么這個(gè)長(zhǎng)方形園地的邊長(zhǎng)應(yīng)該各是多少m?
25. (本題5分)如圖,在Rt△ABC中,∠ACB =90°,AB=8 cm,AC=4cm,點(diǎn)D從點(diǎn)B出發(fā),以每秒 cm的速度在射線BC上勻速運(yùn)動(dòng),當(dāng)點(diǎn)D運(yùn)動(dòng)多少秒時(shí),以A、D、B為頂點(diǎn)的三角形恰為等腰三角形?(結(jié)果可含根號(hào)).
26. (本題6分)
(1)已知:圖1中,△ABC為等邊三角形, CE平分△ABC的外角∠ACM,D為BC邊上任意一點(diǎn),連接AD、DE,如果∠ADE=60°,求證:AD=DE.
(2)圖2中△ABC為任意三角形且∠ACB=60°,如果其他條件不變,這個(gè)結(jié)論還成立嗎?說(shuō)明你的理由.
八年級(jí)數(shù)學(xué)上冊(cè)期末試卷參考答案
一、選擇題(本題共30分,每小題3分)
題號(hào) 1 2 3 4 5 6 7 8 9 10
答案 A D B C A D B C D A
二、填空題(本題共18分,每小題3分)
11. ≥1 12.105° 13. -2(2分),1(1分); 14. 5 15.到線段兩端距離相等的點(diǎn)在線段的垂直平分線上,兩點(diǎn)確定一條直線.(僅回答前一句扣1分) (或等腰三角形三線合一)
注:此題答案不唯一,其他正確答案請(qǐng)酌情相應(yīng)給分
16. 5(1分),5n(2分).
三、解答題(本題共30分,每題5分)
17.解:原式= 4分
= 5分
18.解:x2 + 6x = 9
x2 +6x+9 = 9+9 1分
(x+3)2 =18 2分
x+3=±3 3分
x1 =-3+3 ,x2=-3-3 5分
注:此題用其他解法不給分
19.選擇的條件是:①∠B =∠C ②∠BAD =∠CDA(或①③,①④,②③)
1分
證明:在△BAD和△CDA中
∵ 2分
∴ (AAS) 3分
∴ 4分
即 在△AED中
∴AE = DE ,△AED為等腰三角形 5分
(注:選擇不同條件且證明過(guò)程正確請(qǐng)酌情相應(yīng)給分)
20.解:(1)樣本的容量為500 1分
(2)
4分
(3) 33.6
答:我區(qū)初中生每天進(jìn)行課外閱讀的時(shí)間大約為33.6分鐘. 5分
21.解:(1)∵關(guān)于x的一元二次方程 有兩個(gè)實(shí)根
∴k≠2且△= ≥0 1分
∴k ≤3且k ≠ 2 2分
(2)∵k為正整數(shù),
∴k=1或3 3分
又∵方程 的兩個(gè)實(shí)根都為整數(shù)
當(dāng)k=1時(shí),△ = 12-4k = 8,不是完全平方數(shù),
∴k=1不符合題意,舍去; 4分
當(dāng)k=3時(shí),△ = 12-4k = 0,原方程為 符合題意
∴k= 3 5分
22.解:∵ ,且 ,
∴ 1分
當(dāng)x>0時(shí),得:
即 2分
解得: (舍去), 3分
當(dāng)x<0時(shí),得:
即 4分
解得: (舍去),
∴x=±7 5分
23.(1)∵a= 1,b= -(2m+3) ,c=m2+3m+2
∴ △= b2-4ac
=
=
= 1 >0
∴無(wú)論m取何值,方程總有兩個(gè)不相等的實(shí)數(shù)根
由求根公式得:
即 , 2分
不妨設(shè)AB=m+1,AC=m+2,則AB < AC
∵△ABC為直角三角形且第三邊BC=5,
當(dāng)BC為直角邊時(shí),由勾股定理得:AB2+ BC2=AC 2
∴ ,解得m=11 3分
當(dāng)BC為斜邊時(shí),由勾股定理得:AB2 +AC2=BC2
∴ ,解得m1=2,m2=-5
當(dāng)m=-5時(shí),AB=m+1=-4,∴m=-5舍去 4分
∴m=11或m=2時(shí),△ABC為直角三角形. 5分
24.解:設(shè)該園地垂直于校墻的一邊長(zhǎng)為 x m,則平行于墻的一邊長(zhǎng)為(40-2x)m,根據(jù)題意列方程得: 1分 2分
整理,得:
解得: , 3分 ∵11>10,∴ 不符合實(shí)際要求,舍去
∴x = 9,此時(shí)40-2x = 22 4分
答:這個(gè)長(zhǎng)方形園地該園地垂直于校墻的一邊長(zhǎng)為9 m,平行于墻的一邊長(zhǎng)為22 m. 5分
25.解:在Rt△ABC中,∵∠ACB=90°,AB=8 cm,AC=4 cm,
∴BC= cm
∵點(diǎn)D從點(diǎn)B出發(fā),以每秒 cm的速度在射線BC上勻速運(yùn)動(dòng),
設(shè)當(dāng)點(diǎn)D運(yùn)動(dòng)t秒時(shí)△ABD為等腰三角形,則BD =( t)cm 1分
如圖所示:
當(dāng) AB = AD 時(shí),∵∠ACB = 90°,
∴BD=2 BC = cm
即 t = ,解得 t1=8 2分
當(dāng) BD=AB時(shí), t = 8,∴t2 = 3分
當(dāng) BD=AD時(shí),點(diǎn)D在AB的垂直平分線上,
作AB的垂直平分線交BC于D,在Rt△ACD中,
∵∠ACD=90°,∴ AC2+ CD2= AD2
又∵AC=4 cm,AD= BD= t cm , CD=BC-BD=( - t) cm,
∴42+( - t)2 =( t)2解得 t3 = 4分
答:當(dāng)點(diǎn)D運(yùn)動(dòng)8秒, 秒, 秒時(shí),△ABD為等腰三角形. 5分
26.證明:(1)在AB上取點(diǎn)F,使得AF=DC,連接FD 1分
∵等邊△ABC,
∴AB=BC,∠B = ∠ACB = 60°,∠ACM = 120°
又∵AF=DC
∴BF=BD,△FBD為等邊三角形
∴∠BFD = 60°∴∠AFD = 120°
∵CE平分∠ACM,∠ACM = 120°
∴∠ECM = 60°,∠DCE =120°
∴∠AFD =∠DCE
∵∠ADC=∠B+ ∠BAD,∠ADC=∠ADE+ ∠EDC且∠B=∠ADE=60°
∴∠BAD = ∠EDC即∠FAD = ∠CDE
在△AFD和△DCE中
∵
∴△AFD≌△DCE(ASA)
∴AD=DE 3分
(2) AD=DE成立
在AC上取點(diǎn)G,使GC=CD,連接GD 4分
∵∠ACB=60°,
∴△CDG為等邊三角形,
∴DG=DC,∠DGC =∠GDC = 60°,∠AGD = 120°
∵(1)中已證明∠ECD =120°
∴∠AGD =∠ECD
∵∠ADE=∠ADG+ ∠GDE=60°,
∠GDC=∠GDE+ ∠EDC =60°
∴∠AD G= ∠EDC
在△ADG和△EDC中
∵
∴△ADG≌△EDC (ASA)
∴AD=ED 6分
備注:此評(píng)分標(biāo)準(zhǔn)僅提供有限的解法,其他正確解法仿此標(biāo)準(zhǔn)酌情給分。
八年級(jí)數(shù)學(xué)上冊(cè)期末試卷相關(guān)文章:
1.八年級(jí)上冊(cè)數(shù)學(xué)期末模擬試題
3.2016常熟市初二上冊(cè)數(shù)學(xué)期末試卷