八年級上冊數學復習提綱
八年級上冊數學復習提綱
復習作為一種重要學習方法,對八年級學生的數學學習有著重要的意義。下面小編給大家分享一些八年級上冊數學的復習提綱,大家快來跟小編一起欣賞吧。
八年級上冊數學復習提綱(一)
實數知識要點歸納
一、實數的分類:
2、數軸:規(guī)定了 、 和 的直線叫做數軸(畫數軸時,要注童上述規(guī)定的三要素缺一個不可),
實數與數軸上的點是一一對應的。
數軸上任一點對應的數總大于這個點左邊的點對應的數。
3、相反數與倒數;
4、絕對值
5、近似數與有效數字;
6、科學記數法
7、平方根與算術平方根、立方根;
8、非負數的性質:若幾個非負數之和為零 ,則這幾個數都等于零。
二、復習方案二
1. 無理數:無限不循環(huán)小數
八年級上冊數學復習提綱(二)
整式乘除與因式分解
一.回顧知識點
1、主要知識回顧:
冪的運算性質:
am·an=am+n (m、n為正整數)
同底數冪相乘,底數不變,指數相加.
= amn (m、n為正整數)
冪的乘方,底數不變,指數相乘.
(n為正整數)
積的乘方等于各因式乘方的積.
= am-n (a≠0,m、n都是正整數,且m>n)
同底數冪相除,底數不變,指數相減.
零指數冪的概念:
a0=1 (a≠0)
任何一個不等于零的數的零指數冪都等于l.
負指數冪的概念:
a-p= (a≠0,p是正整數)
任何一個不等于零的數的-p(p是正整數)指數冪,等于這個數的p指數冪的倒數. 也可表示為: (m≠0,n≠0,p為正整數)
單項式的乘法法則:
單項式相乘,把系數、同底數冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式.
單項式與多項式的乘法法則:
單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加. 多項式與多項式的乘法法則:
多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.
第4 / 5頁
單項式的除法法則:
單項式相除,把系數、同底數冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數作為商的一個因式.
多項式除以單項式的法則:
多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.
2、乘法公式:
?、倨椒讲罟剑?a+b)(a-b)=a2-b2
文字語言敘述:兩個數的和與這兩個數的差相乘,等于這兩個數的平方差. ②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字語言敘述:兩個數的和(或差)的平方等于這兩個數的平方和加上(或減去)這兩個數的積的2倍.
3、因式分解:
因式分解的定義.
把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解. 掌握其定義應注意以下幾點:
(1)分解對象是多項式,分解結果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;
(2)因式分解必須是恒等變形;
(3)因式分解必須分解到每個因式都不能分解為止.
弄清因式分解與整式乘法的內在的關系.
因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.
二、熟練掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的關鍵是找出公因式,公因式的構成一般情況下有三部分:①系數一各項系數的最大公約數;②字母——各項含有的相同字母;③指數——相同字母的最低次數;
(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個因式的項數與原多項式的項數一致,這一點可用來檢驗是否漏項.
(4)注意點:①提取公因式后各因式應該是最簡形式,即分解到“底”;②如果多項式的第一項的系數是負的,一般要提出“-”號,使括號內的第一項的系數是正的.
2、公式法
運用公式法分解因式的實質是把整式中的乘法公式反過來使用;
常用的公式:
?、倨椒讲罟剑?a2-b2= (a+b)(a-b)
?、谕耆椒焦剑篴2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
八年級上冊數學復習提綱(三)
一次函數
一.常量、變量:
在一個變化過程中,數值發(fā)生變化的量叫做 變量 ;數值始終不變的量叫做 常量 ;
二、函數的概念:
函數的定義:一般的,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就說x是自變量,y是x的函數.
三、函數中自變量取值范圍的求法:
(1).用整式表示的函數,自變量的取值范圍是全體實數。
(2)用分式表示的函數,自變量的取值范圍是使分母不為0的一切實數。
(3)用2次根式表示的函數,自變量的取值范圍是全體實數。
用偶次根式表示的函數,自變量的取值范圍是使被開方數為非負數的一 切實數。
(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。
(5)對于與實際問題有關系的,自變量的取值范圍應使實際問題有意義。
四、函數圖象的定義:一般的,對于一個函數,如果把自變量與函數的每對對應值分別作為點的橫、縱坐標,那么在坐標平面內由這些點組成的圖形,就是這個函數的圖象.
五、用描點法畫函數的圖象的一般步驟
1、列表(表中給出一些自變量的值及其對應的函數值。)
注意:列表時自變量由小到大,相差一樣,有時需對稱。
2、描點:(在直角坐標系中,以自變量的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點。
3、連線:(按照橫坐標由小到大的順序把所描的各點用平滑的曲線連接起來)。
六、函數有三種表示形式:
(1)列表法 (2)圖像法 (3)解析式法
七、正比例函數與一次函數的概念:
一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。 一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.
當b =0 時,y=kx+b 即為 y=kx,所以正比例函數,是一次函數的特例.
八、正比例函數的圖象與性質:
(1)圖象:正比例函數y= kx (k 是常數,k≠0)) 的圖象是經過原點的一條直線,我們稱它為直線y= kx 。
(2)性質:當k>0時,直線y= kx經過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k<0時,直線y= kx經過二,四象限,從左向右下降,即隨著 x的增大y反而減小。
九、求函數解析式的方法:
待定系數法:先設出函數解析式,再根據條件確定解析式中未知的系數,從而具體寫出這個式子的方法。
1. 一次函數與一元一次方程:從“數”的角度看x為何值時函數y= ax+b的值為0.
2. 求ax+b=0(a, b是常數,a≠0)的解,從“形”的角度看,求直線y= ax+b與 x 軸交點的橫坐標
3. 一次函數與一元一次不等式:
解不等式ax+b>0(a,b是常數,a≠0) .從“數”的角度看,x為何值時函數y= ax+b的值大于0.
4. 解不等式ax+b>0(a,b是常數,a≠0) . 從“形”的角度看,求直線y= ax+b在 x 軸上方的部分(射線)所對應的的橫坐標的取值范圍.
十、一次函數與正比例函數的圖象與性質
一 次 函 數
概 念 :如果y=kx+b(k、b是常數,k≠0),那么y叫x的一次函數.當b=0時,一次函數y=kx(k≠0)也叫正比例函數.
圖 像 :一條直線
性 質 :k>0時,y隨x的增大(或減小)而增大(或減小);
k<0時,y隨x的增大(或減小)而減小(或增大).
直線y=kx+b(k≠0)的位置與k、b符號之間的關系.
(1)k>0,b>0; (2)k>0,b<0;
(3)k>0,b=0 (4)k<0,b>0;
(5)k<0,b<0 (6)k<0,b=0
一次函數表達式的確定
求一次函數y=kx+b(k、b是常數,k≠0)時,需要由兩個點來確定;求正比例函數y=kx(k≠0)時,只需一個點即可.
5.一次函數與二元一次方程組:
解方程組
從“數”的角度看,自變量(x)為何值時兩個函數的值相等.并求出這
個函數值
解方程組
從“形”的角度看,確定兩直線交點的坐標.
猜你感興趣: