八年級(jí)數(shù)學(xué)下冊(cè)勾股定理和四邊形的復(fù)習(xí)提綱
勾股定理
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個(gè)三角形是直角三角形。
3.經(jīng)過證明被確認(rèn)正確的命題叫做定理。
我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
第十九章 四邊形
平行四邊形定義: 有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等。平行四邊形的對(duì)角線互相平分。
平行四邊形的判定
1.兩組對(duì)邊分別相等的四邊形是平行四邊形
2.對(duì)角線互相平分的四邊形是平行四邊形;
3.兩組對(duì)角分別相等的四邊形是平行四邊形;
4.一組對(duì)邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。 直角三角形斜邊上的中線等于斜邊的一半。 矩形的定義:有一個(gè)角是直角的平行四邊形。
矩形的性質(zhì): 矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。
矩形判定定理:
1.有一個(gè)角是直角的平行四邊形叫做矩形。
2.對(duì)角線相等的平行四邊形是矩形。
3.有三個(gè)角是直角的四邊形是矩形。
菱形的定義 :鄰邊相等的平行四邊形。
菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
菱形的判定定理:
1.一組鄰邊相等的平行四邊形是菱形。
2.對(duì)角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對(duì)角線) 正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。 正方形既是矩形,又是菱形。
正方形判定定理:
1.鄰邊相等的矩形是正方形。
2.有一個(gè)角是直角的菱形是正方形。 梯形的定義: 一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。 直角梯形的定義:有一個(gè)角是直角的梯形 等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等。 等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。 解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點(diǎn)。 平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn)。 三角形的三條中線交于疑點(diǎn),這一點(diǎn)就是三角形的重心。 寬和長的比是 (約為0.618)的矩形叫做黃金矩形。