高中學(xué)好數(shù)學(xué)的方法有哪些
高中學(xué)好數(shù)學(xué)的方法有哪些
進入高中,每個人都應(yīng)該先做個自我反省,在學(xué)習(xí)過程中將會出現(xiàn)很多與過去不同的一面,尤其是在數(shù)學(xué)學(xué)習(xí)上,中學(xué)好數(shù)學(xué)的方法有哪些呢?來一起看看吧。
高中學(xué)好數(shù)學(xué)的方法
1、課前預(yù)習(xí)教材。高中生想要學(xué)好數(shù)學(xué),可以養(yǎng)成課前預(yù)習(xí)的好習(xí)慣。就是提前把老師第二天要講的內(nèi)容預(yù)習(xí)一下,看看自己哪里能看懂,哪里不懂。這樣才能在老師講課的時候,帶著問題有針對性的去聽。
2、上課專心聽講。很多高中生數(shù)學(xué)不好的原因,往往是因為沒有認真聽課。很多同學(xué)都認為老師講的已經(jīng)懂了,就不認真聽了,但是在自己做題的時候,卻往往做不對題。上課專心聽講往往是比課下自己學(xué)習(xí)要效果更好。
3、準(zhǔn)備筆記本。高中生要準(zhǔn)備一個筆記本,筆記本并不是讓你極式和概念的,這些的東西書上都是有的,筆記本主要是要記老師給的例題。畢竟老師是很有經(jīng)驗的,他們給的例題都是有一定的代表性的,把例題研究透對于數(shù)學(xué)成績的提高是有很大的助益的。
4、背好數(shù)學(xué)公式。想要提高數(shù)學(xué)成績,先要背好數(shù)學(xué)公式,背不好公式就甭想做好題了。就算是老師上課帶著推導(dǎo)的公式也一定要在注意記背。另外最重要的是,老師留下的作業(yè)一定要認真完成。寫作業(yè)的過程就是在鞏固你當(dāng)天所學(xué)的數(shù)學(xué)知識。
5、復(fù)習(xí)鞏固。數(shù)學(xué)課后復(fù)習(xí)是絕對有必要的,如果不復(fù)習(xí)上課聽的再認真也沒有用。剛學(xué)的知識,還沒有完全消化吸收成為自己的知識,如及時復(fù)習(xí),就會很容易忘記。所以,課后一定要抽出一些時間,對所學(xué)的知識進行鞏固。
高中數(shù)學(xué)解題技巧
一、三角函數(shù)題
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時,套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導(dǎo)致錯誤!一著不慎,滿盤皆輸!)。
二、數(shù)列題
1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構(gòu)造函數(shù)的意識)。
三、立體幾何題
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號問題、鈍角、銳角問題)。
四、概率問題
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);
2、搞清是什么概率模型,套用哪個公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時,正難則反(根據(jù)p1+p2+...+pn=1);
5、注意計數(shù)時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;
2、注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等;
3、戰(zhàn)術(shù)上整體思路要保7分,爭9分,想12分。
六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問題
1、先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(知函數(shù)求單調(diào)區(qū)間,不帶等號;知單調(diào)性,求參數(shù)范圍,帶等號);
2、注意最后一問有應(yīng)用前面結(jié)論的意識;
3、注意分論討論的思想;
4、不等式問題有構(gòu)造函數(shù)的意識;
5、恒成立問題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);
6、整體思路上保6分,爭10分,想14分。