中學數(shù)學知識點方法學習
中學數(shù)學知識點方法學習整理
數(shù)學是科學研究的基礎,它與物理、化學、生物等學科密切相關。下面是小編為大家?guī)淼?/span>中學數(shù)學知識點方法學習,希望大家能夠喜歡!快來看看吧!
三類角的求法:
①找出或作出有關的角。
②證明其符合定義,并指出所求作的角。
③計算大小(解直角三角形,或用余弦定理)。
復合函數(shù)的有關問題
(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數(shù)的單調性由“同增異減”判定;
比較兩個實數(shù)的大小
兩個實數(shù)的大小是用實數(shù)的運算性質來定義的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,則有>1?;=1?;<1?.
概括為:作差法,作商法,中間量法等.
復數(shù)的幾何意義
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復數(shù)的幾何意義:復數(shù)集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數(shù)有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數(shù)和它對應。
這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
運算性質有
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關系有兩種:“”和“”即推出關系和等價關系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
②關于不等式的性質的考察,主要有以下三類問題:
(1)根據(jù)給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數(shù)的性質,函數(shù)性質,判斷實數(shù)值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。