遇到數(shù)學難題要尋求策略得分
學習數(shù)學對于學生來說可能是一項具有挑戰(zhàn)性的任務。數(shù)學真的很難,下面是小編為大家?guī)淼?/span>遇到數(shù)學難題要尋求策略得分,希望大家能夠喜歡!快來看看吧!
遇到數(shù)學難題要尋求策略得分
會做的題當然要做對、做全、得滿分,而不會做的或是難題該怎樣得分呢?首先遇到難題不要放棄,豈不知"易題得滿分難,難題得小分易",一般的難題第一、二問都是能得分的,即使一點思路都沒有,我們不妨羅列一些相關的重要步驟和公式,也許不覺中已找到了解題的
思路。再就是要學會"分段得分",高考數(shù)學解答題評分的總原則是"分段給分",即會多少知識給多少分,所以你可能前面某個地方卡住了,可以先跳過去,假定它是正確的,向后求解;或是前后兩問無聯(lián)系,只做其中某一問等等。
遇到難題不棄,尋求策略得分
數(shù)學選擇題的解題技巧——解題技巧(7)
會做的題當然要做對、做全、得滿分,而不會做的或是難題該怎樣得分呢?首先遇到難題不要放棄,豈不知"易題得滿分難,難題得小分易",一般的難題第一、二問都是能得分的,即使一點思路都沒有,我們不妨羅列一些相關的重要步驟和公式,也許不覺中已找到了解題的
思路。再就是要學會"分段得分",高考數(shù)學解答題評分的總原則是"分段給分",即會多少知識給多少分,所以你可能前面某個地方卡住了,可以先跳過去,假定它是正確的,向后求解;或是前后兩問無聯(lián)系,只做其中某一問等等。
極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對于所求的未知量,先設法構(gòu)思一個與它有關的變量;(2)確認這變量通過無限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計算法則得出結(jié)果或利用圖形的極限位置直接計算結(jié)果。
遇到難題不棄,尋求策略得分
會做的題當然要做對、做全、得滿分,而不會做的或是難題該怎樣得分呢?首先遇到難題不要放棄,豈不知"易題得滿分難,難題得小分易",一般的難題第一、二問都是能得分的,即使一點思路都沒有,我們不妨羅列一些相關的重要步驟和公式,也許不覺中已找到了解題的
思路。再就是要學會"分段得分",高考數(shù)學解答題評分的總原則是"分段給分",即會多少知識給多少分,所以你可能前面某個地方卡住了,可以先跳過去,假定它是正確的,向后求解;或是前后兩問無聯(lián)系,只做其中某一問等等。
遇到難題不棄,尋求策略得分
數(shù)學選擇題的解題技巧——解題技巧(7)
會做的題當然要做對、做全、得滿分,而不會做的或是難題該怎樣得分呢?首先遇到難題不要放棄,豈不知"易題得滿分難,難題得小分易",一般的難題第一、二問都是能得分的,即使一點思路都沒有,我們不妨羅列一些相關的重要步驟和公式,也許不覺中已找到了解題的
思路。再就是要學會"分段得分",高考數(shù)學解答題評分的總原則是"分段給分",即會多少知識給多少分,所以你可能前面某個地方卡住了,可以先跳過去,假定它是正確的,向后求解;或是前后兩問無聯(lián)系,只做其中某一問等等。
難題要學會
(1)缺步解答:聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,能解決多少就解決多少,能演算幾步就寫幾步。特別是那些解題層次明顯的題目,或者是已經(jīng)程序化了的方法,每進行一步得分點的演算都可以得分,最后結(jié)論雖然未得出,但分數(shù)卻已過半。
(2)跳步答題:解題過程卡在某一過渡環(huán)節(jié)上是常見的。這時,我們可以假定某些結(jié)論是正確的往后推,看能否得到結(jié)論,或從結(jié)論出發(fā),看使結(jié)論成立需要什么條件。如果方向正確,就回過頭來,集中力量攻克這一“卡殼處”。如果時間不允許,那么可以把前面的寫下來,再寫出“證實某步之后,繼續(xù)有……”一直做到底,這就是跳步解答。也許,后來中間步驟又想出來,這時不要亂七八糟插上去,可補在后面。若題目有兩問,第一問想不出來,可把第一問作“已知”,“先做第二問”,這也是跳步解答。
選擇題的解法
選擇題得分關鍵是考生能否精確、迅速地解答。究。掌握這方面的技巧,充分發(fā)揮主觀能動性數(shù)學選擇題的求解有兩種思路:一是從題干出發(fā)考慮,探求結(jié)果;二是題干和選擇的分支聯(lián)合考慮或從選擇的分支出發(fā)探求是否滿足題干條件,由于答案在四個中找一個,隨機分一定要拿到。選擇題解題的基本原則是:"充分利用選擇題的特點,小題盡量不要大做"。