初二該如何高效學習數(shù)學
你是否為數(shù)學絞盡腦汁,想學好數(shù)學卻不知該如何高效學習?今天小編為你帶來一篇數(shù)學的學習方法,我們該如何高效學習數(shù)學,希望能幫到各位同學。
八年級數(shù)學學習方法指導
多看一些例題。細心的朋友會發(fā)現(xiàn),老師在講解基礎內容之后,總是給我們補充一些課外例、習題,這是大有裨益的,我們學的概念、定理,一般較抽象,要把它們具體化,就需要把它們運用在題目中,由于我們剛接觸到這些知識,運用起來還不夠熟練,這時,例題就幫了我們大忙,我們可以在看例題的過程中,將頭腦中已有的概念具體化,使對知識的理解更深刻,更透徹,由于老師補充的例題十分有限,所以我們還應自己找一些來看,看例題
深刻理解概念。概念是數(shù)學的基石,學習概念(包括定理、性質)不僅要知其然,還要知其所以然,許多同學只注重記概念,而忽視了對其背景的理解,這樣是學不好數(shù)學的,對于每個定義、定理,我們必須在牢記其內容的基礎上知道它是怎樣得來的,又是運用到何處的,只有這樣,才能更好地運用它來解決問題。
學數(shù)學方法一
要想學好數(shù)學,必須多做練習,但有的同學多做練習能學好,有的同學做了很多練習仍舊學不好,究其因,是“多做練習”是否得法的問題,我們所說的“多做練習”,不是搞“題海戰(zhàn)術”。后者只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結論是否還可以加強、推廣,等等,還要真正掌握方法,切實做到以下三點,才能使“多做練習”真正發(fā)揮它的作用。必須熟悉各種基本題型并掌握其解法。課本上的每一道練習題,都是針對一個知識點出的,是最基本的題目,必須熟練掌握;課外的習題,也有許多基本題型,其運用方法較多,針對性也強,應該能夠迅速做出。許多綜合題只是若干個基本題的有機結合,基本題掌握了,不愁解不了它們。
在解題過程中有意識地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢。數(shù)學是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會反映出一定的思維方法,如果我們有意識地注重這些思維方法,時間長了頭腦中便形成了對每一類題型的“通用”解法,即正確的思維定勢,這時在解這一類的題目時就易如反掌了;同時,掌握了更多的思維方法,為做綜合題奠定了一定的基礎。多做綜合題。綜合題,由于用到的知識點較多,頗受命題人青睞。做綜合題也是檢驗自己學習成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補不足,使自己的數(shù)學水平不斷提高?!岸嘧鼍毩暋币L期堅持,每天都要做幾道,時間長了才會有明顯的效果和較大的收獲。
學數(shù)學方法二
獨立作業(yè)是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由“會”到“熟”。在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入好狀態(tài),在考試中能運用自如。實踐證明:越到關鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。
學生質疑習慣的培養(yǎng),也可從模仿開始,教師要注意質疑的“言傳身教”,教給學生可以在哪兒找疑點。一般來說,質疑可以發(fā)生在新舊知識的銜接處、學習過程的困惑處、法則規(guī)律的結論處、教學內容的重難點及關鍵點處,概念的形成過程中、解題思路的分析過程中、動手操作的實踐中;還要讓學生學會變換角度,提出問題。
學數(shù)學方法三
系統(tǒng)小結是學生通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結要在系統(tǒng)復習的基礎上以教材為依據(jù),參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯(lián)系。以達到對所學知識融會貫通的目的。經(jīng)常進行多層次小結,能對所學知識由“活”到“悟”。
對數(shù)學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數(shù)學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學的定義、法則、公式、定理就很難解數(shù)學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學題,甚至是解數(shù)學難題中得心應手。