高中數(shù)學(xué)學(xué)習(xí)的六大技巧
學(xué)習(xí)方法是通過學(xué)習(xí)實踐總結(jié)出的快速掌握知識的方法。因其與學(xué)習(xí)掌握知識的效率有關(guān),越來越受到人們的重視。學(xué)習(xí)方法,并沒有統(tǒng)一的規(guī)定,因個人條件不同,時代不同,環(huán)境不同,選取的方法也不同。今天小編給大家?guī)砀咧袛?shù)學(xué)學(xué)習(xí)的六大技巧。
一、溫故法
學(xué)習(xí)新概念前,如果能對孩子認(rèn)知結(jié)構(gòu)中原有的適當(dāng)概念作一些結(jié)構(gòu)上的變化來引進(jìn)新概念,則有利于促進(jìn)新概念的形成。
二、操作法
對有些概念的教學(xué),可以從感性材料出發(fā),讓孩子在操作中去發(fā)現(xiàn)概念的發(fā)生和發(fā)展過程。
三、類比法
這種方法有利于分析兩相關(guān)概念的異同,歸納出新授內(nèi)容有關(guān)知識;有利于幫助孩子架起新、舊知識的橋梁,促進(jìn)知識遷移,提高探索能力。
四、喻理法
為正確理解某一概念,以實例或生活中的趣事、典故作比喻,引出新概念.
判斷函數(shù)零點個數(shù)的常用方法
(1)解方程法:令f(x)=0,如果能求出解,則有幾個解就有幾個零點.
(2)零點存在性定理法:利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點.
(3)數(shù)形結(jié)合法:轉(zhuǎn)化為兩個函數(shù)的圖象的交點個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù).
五、置疑法
這種方法是通過揭示教學(xué)自身的矛盾來引入概念,以突出引進(jìn)新概念的必要性和合理性,調(diào)動孩子了解新概念的強(qiáng)烈的動機(jī)和愿望。
六、創(chuàng)境法
如在講相遇問題時,為讓孩子對相向運動的各種可能的情況有所感受,可以從研究"鼓掌時兩只手怎樣運動"開始。通過拍手體驗,在邊問、邊議中逐步講解。實踐證明,如此使孩子猶如身臨其境去體驗并理解有關(guān)知識,能很快準(zhǔn)確地掌握相關(guān)的數(shù)學(xué)概念。
相關(guān)文章:
1.
3.高中數(shù)學(xué)學(xué)習(xí)技巧的四個方法