2023高考數(shù)學基礎差補救提分方法
2023高考數(shù)學基礎差補救提分方法總結(jié)
高中有很多數(shù)學基礎差的同學,如果你們想要提升自己的數(shù)學成績,其實有很多實用的方法下面是小編為大家整理的關于2023高考數(shù)學基礎差補救提分方法,歡迎大家來閱讀。
高中數(shù)學基礎補救方法
1、請復習課本。
永遠不要小看課本上的知識點,我們平時的學習都來源于課本,所以在復習的時候一定不能把課本拉下。我們應該逐步發(fā)現(xiàn)知識之間的聯(lián)系,構建知識框架,填補知識空白,為后續(xù)的復習提供理論支持。
2、發(fā)展良好的計算和檢查實踐,提高計算能力。
學習數(shù)學最重要的就是計算能力和邏輯思維能力,中學教師經(jīng)常在程序上一步一步地計算。由于時間有限,計算量大,高中老師經(jīng)常把計算交給學生,這不僅需要學生的大腦和努力,還需要書面計算,以及口頭和心理計算。對于復雜的運算,我們應該以數(shù)字和簡單的方式進行計算。
3、制定解決問題和提高思考能力的良好做法。
這是一項數(shù)學思維的體操,思維邏輯性強,思維縝密。文化和標準化是解決問題的有效途徑,以提高數(shù)學語言表達能力:文字、符號和圖形。數(shù)學語言是發(fā)展思維能力的基礎。因此,在此基礎上,我們只能提高我們共同思考的能力。
4、經(jīng)常做筆記。
學生們必須在課堂上認真記筆記,這些筆記對于他們所說的放大鏡來說具有正確的特征,并且“抓住要點,去其糟粕”。我們必須以書面形式仔細計算,找出困難,管理解決方案,最終得到正確的計算結(jié)果。
5、增加相應的練習。
可以填補基本選項中的空白,逐步提高你的實力。同時,要用錯誤的問題填空經(jīng)驗和技能,總結(jié)經(jīng)驗,增強解決問題的能力。
高考數(shù)學基礎差提分方法
其實,對數(shù)學基礎的構建,是相對其他學科而言,容易的多。因為數(shù)學知識點的起點、推導過程、公式定理的應用案例非常明確,所以只要從數(shù)學公式入手,找到其公式的起點和過程,就能把基礎知識拿下。
夯實基礎的重點方法
特別是基礎差的同學,一定要老老實實的從課本開始,不要求快,要復習一個章節(jié),掌握一個章節(jié)。具體的方法是,先看公式,理解、記住,然后看課后習題,用題來思考怎么解,不要計算,只要思考就好,然后再翻課本看公式定理是怎么推導的,尤其是過程和應用案例。特別注意這些知識點為什么產(chǎn)生的。如集合、映射的數(shù)學意義是為了闡述兩組數(shù)據(jù)(元素)之間的關系。而函數(shù)就是立足于集合。并由此產(chǎn)生的充要條件等知識點。通過這么去理解,你會發(fā)現(xiàn),數(shù)學基礎很快就能掌握。但記住,一定要循序漸進,不能著急。
對于容易犯的錯誤,要做好錯題筆記,分析錯誤原因,找到糾正的辦法;不能盲目做題,必須在搞清楚概念的基礎上做才是有效的,因為盲目大量做題,有時候錯誤或者誤解也會得到鞏固,糾正起來更加困難。對于課本中的典型問題,要深刻理解,并學會解題后反思:反思題意,防止誤解;反思過程,防止謬誤;反思方法,精益求精;反思變化,高屋建瓴。這樣不僅能夠深刻理解這個問題,還有利于擴大解題收益,跳出題海!
高三數(shù)學基礎差怎么補
1.首先,學生們每次上課之前對課本上的內(nèi)容進行簡短地預習,這樣對將要學習的知識點有個籠統(tǒng)的了解,標志出自己預習時不懂不太理解的內(nèi)容,便于在老師上課時學生進行提問,有效解決學生學習問題。
2.其次,學生在上課時一定要勤于記筆記,對老師所講內(nèi)容要具有針對性,做到“取其精華,去其糟粕”。對于數(shù)學題目的解法,有時不能光靠腦子,一定要經(jīng)過周密的筆頭計算才能夠發(fā)現(xiàn)其中的難點并且掌握化解方法,最終得到正確的計算結(jié)果。
3.接著課后一定要對老師所講的內(nèi)容進行不斷練習鞏固,把課堂把課堂例題反復演算幾遍。加強課后練習,除了作業(yè)之外,找一本好的參考書,盡量多做一下書上的練習題(尤其是綜合題和應用題)。熟能生巧,這樣才能鞏固課堂學習的效果,使你的解題速度越來越快。
4.學習數(shù)學要善于總結(jié)歸類,尋找不同的題型、不同的知識點之間的共性和聯(lián)系,把學過的知識系統(tǒng)化。舉個具體的例子:高一代數(shù)的函數(shù)部分,我們學習了指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等好幾種不同類型的函數(shù)。但是把它們對比著總結(jié)一下,你就會發(fā)現(xiàn)無論哪種函數(shù),我們需要掌握的都是它的表達式、圖象形狀、奇偶性、增減性和對稱性。那么你可以將這些函數(shù)的上述內(nèi)容制作在一張大表格中,對比著進行理解和記憶。在解題時注意函數(shù)表達式與圖形結(jié)合使用,必定會收到好得多的效果。