設計模式六大原則
設計原則是基本的工具,應用這些規(guī)則可以使你的代碼更加靈活、更容易維護,更容易擴展。今天學習啦小編分享了設計模式六大原則,一起來了解吧。
設計模式六大原則
設計模式原則1:單一職責原則
定義:不要存在多于一個導致類變更的原因。通俗的說,即一個類只負責一項職責。
問題由來:類T負責兩個不同的職責:職責P1,職責P2。當由于職責P1需求發(fā)生改變而需要修改類T時,有可能會導致原本運行正常的職責P2功能發(fā)生故障。
解決方案:遵循單一職責原則。分別建立兩個類T1、T2,使T1完成職責P1功能,T2完成職責P2功能。這樣,當修改類T1時,不會使職責P2發(fā)生故障風險;同理,當修改T2時,也不會使職責P1發(fā)生故障風險。
說到單一職責原則,很多人都會不屑一顧。因為它太簡單了。稍有經驗的程序員即使從來沒有讀過設計模式、從來沒有聽說過單一職責原則,在設計軟件時也會自覺的遵守這一重要原則,因為這是常識。在軟件編程中,誰也不希望因為修改了一個功能導致其他的功能發(fā)生故障。而避免出現這一問題的方法便是遵循單一職責原則。雖然單一職責原則如此簡單,并且被認為是常識,但是即便是經驗豐富的程序員寫出的程序,也會有違背這一原則的代碼存在。為什么會出現這種現象呢?因為有職責擴散。所謂職責擴散,就是因為某種原因,職責P被分化為粒度更細的職責P1和P2。
比如:類T只負責一個職責P,這樣設計是符合單一職責原則的。后來由于某種原因,也許是需求變更了,也許是程序的設計者境界提高了,需要將職責P細分為粒度更細的職責P1,P2,這時如果要使程序遵循單一職責原則,需要將類T也分解為兩個類T1和T2,分別負責P1、P2兩個職責。但是在程序已經寫好的情況下,這樣做簡直太費時間了。所以,簡單的修改類T,用它來負責兩個職責是一個比較不錯的選擇,雖然這樣做有悖于單一職責原則。(這樣做的風險在于職責擴散的不確定性,因為我們不會想到這個職責P,在未來可能會擴散為P1,P2,P3,P4……Pn。所以記住,在職責擴散到我們無法控制的程度之前,立刻對代碼進行重構。)
舉例說明,用一個類描述動物呼吸這個場景:
class Animal{ public void breathe(String animal){ System.out.println(animal+"呼吸空氣"); } } public class Client{ public static void main(String[] args){ Animal animal = new Animal(); animal.breathe("牛"); animal.breathe("羊"); animal.breathe("豬"); } } |
運行結果:
牛呼吸空氣
羊呼吸空氣
豬呼吸空氣
程序上線后,發(fā)現問題了,并不是所有的動物都呼吸空氣的,比如魚就是呼吸水的。修改時如果遵循單一職責原則,需要將Animal類細分為陸生動物類Terrestrial,水生動物Aquatic,代碼如下:
class Terrestrial{ public void breathe(String animal){ System.out.println(animal+"呼吸空氣"); } } class Aquatic{ public void breathe(String animal){ System.out.println(animal+"呼吸水"); } } public class Client{ public static void main(String[] args){ Terrestrial terrestrial = new Terrestrial(); terrestrial.breathe("牛"); terrestrial.breathe("羊"); terrestrial.breathe("豬"); Aquatic aquatic = new Aquatic(); aquatic.breathe("魚"); } } |
運行結果:
牛呼吸空氣
羊呼吸空氣
豬呼吸空氣
魚呼吸水
我們會發(fā)現如果這樣修改花銷是很大的,除了將原來的類分解之外,還需要修改客戶端。而直接修改類Animal來達成目的雖然違背了單一職責原則,但花銷卻小的多,代碼如下:
class Animal{ public void breathe(String animal){ if("魚".equals(animal)){ System.out.println(animal+"呼吸水"); }else{ System.out.println(animal+"呼吸空氣"); } } } public class Client{ public static void main(String[] args){ Animal animal = new Animal(); animal.breathe("牛"); animal.breathe("羊"); animal.breathe("豬"); animal.breathe("魚"); } } |
可以看到,這種修改方式要簡單的多。但是卻存在著隱患:有一天需要將魚分為呼吸淡水的魚和呼吸海水的魚,則又需要修改Animal類的breathe方法,而對原有代碼的修改會對調用“豬”“牛”“羊”等相關功能帶來風險,也許某一天你會發(fā)現程序運行的結果變?yōu)?ldquo;牛呼吸水”了。這種修改方式直接在代碼級別上違背了單一職責原則,雖然修改起來最簡單,但隱患卻是最大的。還有一種修改方式:
class Animal{ public void breathe(String animal){ System.out.println(animal+"呼吸空氣"); } public void breathe2(String animal){ System.out.println(animal+"呼吸水"); } } public class Client{ public static void main(String[] args){ Animal animal = new Animal(); animal.breathe("牛"); animal.breathe("羊"); animal.breathe("豬"); animal.breathe2("魚"); } } |
可以看到,這種修改方式沒有改動原來的方法,而是在類中新加了一個方法,這樣雖然也違背了單一職責原則,但在方法級別上卻是符合單一職責原則的,因為它并沒有動原來方法的代碼。這三種方式各有優(yōu)缺點,那么在實際編程中,采用哪一中呢?其實這真的比較難說,需要根據實際情況來確定。我的原則是:只有邏輯足夠簡單,才可以在代碼級別上違反單一職責原則;只有類中方法數量足夠少,才可以在方法級別上違反單一職責原則;
例如本文所舉的這個例子,它太簡單了,它只有一個方法,所以,無論是在代碼級別上違反單一職責原則,還是在方法級別上違反,都不會造成太大的影響。實際應用中的類都要復雜的多,一旦發(fā)生職責擴散而需要修改類時,除非這個類本身非常簡單,否則還是遵循單一職責原則的好。
遵循單一職責原的優(yōu)點有:
可以降低類的復雜度,一個類只負責一項職責,其邏輯肯定要比負責多項職責簡單的多;
提高類的可讀性,提高系統(tǒng)的可維護性;
變更引起的風險降低,變更是必然的,如果單一職責原則遵守的好,當修改一個功能時,可以顯著降低對其他功能的影響。
需要說明的一點是單一職責原則不只是面向對象編程思想所特有的,只要是模塊化的程序設計,都適用單一職責原則。
設計模式原則2:里氏替換原則
肯定有不少人跟我剛看到這項原則的時候一樣,對這個原則的名字充滿疑惑。其實原因就是這項原則最早是在1988年,由麻省理工學院的一位姓里的女士(Barbara Liskov)提出來的。
定義1:如果對每一個類型為 T1的對象 o1,都有類型為 T2 的對象o2,使得以 T1定義的所有程序 P 在所有的對象 o1 都代換成 o2 時,程序 P 的行為沒有發(fā)生變化,那么類型 T2 是類型 T1 的子類型。
定義2:所有引用基類的地方必須能透明地使用其子類的對象。
問題由來:有一功能P1,由類A完成。現需要將功能P1進行擴展,擴展后的功能為P,其中P由原有功能P1與新功能P2組成。新功能P由類A的子類B來完成,則子類B在完成新功能P2的同時,有可能會導致原有功能P1發(fā)生故障。
解決方案:當使用繼承時,遵循里氏替換原則。類B繼承類A時,除添加新的方法完成新增功能P2外,盡量不要重寫父類A的方法,也盡量不要重載父類A的方法。
繼承包含這樣一層含義:父類中凡是已經實現好的方法(相對于抽象方法而言),實際上是在設定一系列的規(guī)范和契約,雖然它不強制要求所有的子類必須遵從這些契約,但是如果子類對這些非抽象方法任意修改,就會對整個繼承體系造成破壞。而里氏替換原則就是表達了這一層含義。
繼承作為面向對象三大特性之一,在給程序設計帶來巨大便利的同時,也帶來了弊端。比如使用繼承會給程序帶來侵入性,程序的可移植性降低,增加了對象間的耦合性,如果一個類被其他的類所繼承,則當這個類需要修改時,必須考慮到所有的子類,并且父類修改后,所有涉及到子類的功能都有可能會產生故障。
舉例說明繼承的風險,我們需要完成一個兩數相減的功能,由類A來負責。
class A{ public int func1(int a, int b){ return a-b; } } public class Client{ public static void main(String[] args){ A a = new A(); System.out.println("100-50="+a.func1(100, 50)); System.out.println("100-80="+a.func1(100, 80)); } } |
運行結果:
100-50=50
100-80=20
后來,我們需要增加一個新的功能:完成兩數相加,然后再與100求和,由類B來負責。即類B需要完成兩個功能:
兩數相減。
兩數相加,然后再加100。
由于類A已經實現了第一個功能,所以類B繼承類A后,只需要再完成第二個功能就可以了,代碼如下:
class B extends A{ public int func1(int a, int b){ return a+b; } public int func2(int a, int b){ return func1(a,b)+100; } } public class Client{ public static void main(String[] args){ B b = new B(); System.out.println("100-50="+b.func1(100, 50)); System.out.println("100-80="+b.func1(100, 80)); System.out.println("100+20+100="+b.func2(100, 20)); } } |
類B完成后,運行結果:
100-50=150
100-80=180
100+20+100=220
我們發(fā)現原本運行正常的相減功能發(fā)生了錯誤。原因就是類B在給方法起名時無意中重寫了父類的方法,造成所有運行相減功能的代碼全部調用了類B重寫后的方法,造成原本運行正常的功能出現了錯誤。在本例中,引用基類A完成的功能,換成子類B之后,發(fā)生了異常。在實際編程中,我們常常會通過重寫父類的方法來完成新的功能,這樣寫起來雖然簡單,但是整個繼承體系的可復用性會比較差,特別是運用多態(tài)比較頻繁時,程序運行出錯的幾率非常大。如果非要重寫父類的方法,比較通用的做法是:原來的父類和子類都繼承一個更通俗的基類,原有的繼承關系去掉,采用依賴、聚合,組合等關系代替。
里氏替換原則通俗的來講就是:子類可以擴展父類的功能,但不能改變父類原有的功能。它包含以下4層含義:
子類可以實現父類的抽象方法,但不能覆蓋父類的非抽象方法。
子類中可以增加自己特有的方法。
當子類的方法重載父類的方法時,方法的前置條件(即方法的形參)要比父類方法的輸入參數更寬松。
當子類的方法實現父類的抽象方法時,方法的后置條件(即方法的返回值)要比父類更嚴格。
看上去很不可思議,因為我們會發(fā)現在自己編程中常常會違反里氏替換原則,程序照樣跑的好好的。所以大家都會產生這樣的疑問,假如我非要不遵循里氏替換原則會有什么后果?
后果就是:你寫的代碼出問題的幾率將會大大增加。
設計模式原則3:依賴倒置原則
定義:高層模塊不應該依賴低層模塊,二者都應該依賴其抽象;抽象不應該依賴細節(jié);細節(jié)應該依賴抽象。
問題由來:類A直接依賴類B,假如要將類A改為依賴類C,則必須通過修改類A的代碼來達成。這種場景下,類A一般是高層模塊,負責復雜的業(yè)務邏輯;類B和類C是低層模塊,負責基本的原子操作;假如修改類A,會給程序帶來不必要的風險。
解決方案:將類A修改為依賴接口I,類B和類C各自實現接口I,類A通過接口I間接與類B或者類C發(fā)生聯系,則會大大降低修改類A的幾率。
依賴倒置原則基于這樣一個事實:相對于細節(jié)的多變性,抽象的東西要穩(wěn)定的多。以抽象為基礎搭建起來的架構比以細節(jié)為基礎搭建起來的架構要穩(wěn)定的多。在java中,抽象指的是接口或者抽象類,細節(jié)就是具體的實現類,使用接口或者抽象類的目的是制定好規(guī)范和契約,而不去涉及任何具體的操作,把展現細節(jié)的任務交給他們的實現類去完成。
依賴倒置原則的核心思想是面向接口編程,我們依舊用一個例子來說明面向接口編程比相對于面向實現編程好在什么地方。場景是這樣的,母親給孩子講故事,只要給她一本書,她就可以照著書給孩子講故事了。代碼如下:
class Book{ public String getContent(){ return "很久很久以前有一個阿拉伯的故事……"; } } class Mother{ public void narrate(Book book){ System.out.println("媽媽開始講故事"); System.out.println(book.getContent()); } } public class Client{ public static void main(String[] args){ Mother mother = new Mother(); mother.narrate(new Book()); } } |
運行結果:
媽媽開始講故事
很久很久以前有一個阿拉伯的故事……
運行良好,假如有一天,需求變成這樣:不是給書而是給一份報紙,讓這位母親講一下報紙上的故事,報紙的代碼如下:
class Newspaper{ public String getContent(){ return "林書豪38+7領導尼克斯擊敗湖人……"; } } |
這位母親卻辦不到,因為她居然不會讀報紙上的故事,這太荒唐了,只是將書換成報紙,居然必須要修改Mother才能讀。假如以后需求換成雜志呢?換成網頁呢?還要不斷地修改Mother,這顯然不是好的設計。原因就是Mother與Book之間的耦合性太高了,必須降低他們之間的耦合度才行。
我們引入一個抽象的接口IReader。讀物,只要是帶字的都屬于讀物:
interface IReader{ public String getContent(); } |
Mother類與接口IReader發(fā)生依賴關系,而Book和Newspaper都屬于讀物的范疇,他們各自都去實現IReader接口,這樣就符合依賴倒置原則了,代碼修改為:
class Newspaper implements IReader { public String getContent(){ return "林書豪17+9助尼克斯擊敗老鷹……"; } } class Book implements IReader{ public String getContent(){ return "很久很久以前有一個阿拉伯的故事……"; } } class Mother{ public void narrate(IReader reader){ System.out.println("媽媽開始講故事"); System.out.println(reader.getContent()); } } public class Client{ public static void main(String[] args){ Mother mother = new Mother(); mother.narrate(new Book()); mother.narrate(new Newspaper()); } } |
運行結果:
媽媽開始講故事
很久很久以前有一個阿拉伯的故事……
媽媽開始講故事
林書豪17+9助尼克斯擊敗老鷹……
這樣修改后,無論以后怎樣擴展Client類,都不需要再修改Mother類了。這只是一個簡單的例子,實際情況中,代表高層模塊的Mother類將負責完成主要的業(yè)務邏輯,一旦需要對它進行修改,引入錯誤的風險極大。所以遵循依賴倒置原則可以降低類之間的耦合性,提高系統(tǒng)的穩(wěn)定性,降低修改程序造成的風險。
采用依賴倒置原則給多人并行開發(fā)帶來了極大的便利,比如上例中,原本Mother類與Book類直接耦合時,Mother類必須等Book類編碼完成后才可以進行編碼,因為Mother類依賴于Book類。修改后的程序則可以同時開工,互不影響,因為Mother與Book類一點關系也沒有。參與協作開發(fā)的人越多、項目越龐大,采用依賴導致原則的意義就越重大?,F在很流行的TDD開發(fā)模式就是依賴倒置原則最成功的應用。
傳遞依賴關系有三種方式,以上的例子中使用的方法是接口傳遞,另外還有兩種傳遞方式:構造方法傳遞和setter方法傳遞,相信用過Spring框架的,對依賴的傳遞方式一定不會陌生。
在實際編程中,我們一般需要做到如下3點:
低層模塊盡量都要有抽象類或接口,或者兩者都有。
變量的聲明類型盡量是抽象類或接口。
使用繼承時遵循里氏替換原則。
依賴倒置原則的核心就是要我們面向接口編程,理解了面向接口編程,也就理解了依賴倒置。
點擊下頁還有更多 設計模式原則
設計模式六大原則
上一篇:沒有了
下一篇:辦公環(huán)境設計方案