特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦>新聞資訊>教育>

考研數(shù)學(xué)高數(shù)易出證明題的知識(shí)點(diǎn)有哪些

時(shí)間: 淑賢744 分享

  高等數(shù)學(xué)在考研中,也被稱為微積分學(xué)。在高數(shù)中,很多知識(shí)點(diǎn)都比較容易出證明題。下面就是學(xué)習(xí)啦小編給大家整理的考研數(shù)學(xué)高數(shù)易出證明題的知識(shí)點(diǎn),希望對(duì)你有用!

  考研數(shù)學(xué)高數(shù)易出證明題的知識(shí)點(diǎn)

  一、數(shù)列極限的證明

  數(shù)列極限的證明是數(shù)一、二的重點(diǎn),特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。

  二、微分中值定理的相關(guān)證明

  微分中值定理的證明題歷來是考研的重難點(diǎn),其考試特點(diǎn)是綜合性強(qiáng),涉及到知識(shí)面廣,涉及到中值的等式主要是三類定理:

  1.零點(diǎn)定理和介質(zhì)定理;

  2.微分中值定理;

  包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個(gè)定理為主。

  3.微分中值定理

  積分中值定理的作用是為了去掉積分符號(hào)。

  在考查的時(shí)候,一般會(huì)把三類定理兩兩結(jié)合起來進(jìn)行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。

  三、方程根的問題

  包括方程根唯一和方程根的個(gè)數(shù)的討論。

  四、不等式的證明

  五、定積分等式和不等式的證明

  主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。

  六、積分與路徑無關(guān)的五個(gè)等價(jià)條件

  這一部分是數(shù)一的考試重點(diǎn),最近幾年沒設(shè)計(jì)到,所以要重點(diǎn)關(guān)注。

  考研高等數(shù)學(xué)得分考點(diǎn)

  1.函數(shù)、極限與連續(xù)。求分段函數(shù)的復(fù)合函數(shù);求極限或已知極限確定原式中的常數(shù);討論函數(shù)的連續(xù)性,判斷間斷點(diǎn)的類型;無窮小階的比較;討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù),或確定方程在給定區(qū)間上有無實(shí)根。這一部分更多的會(huì)以選擇題,填空題,或者作為構(gòu)成大題的一個(gè)部件來考核,關(guān)鍵是要對(duì)這些概念有本質(zhì)的理解,在此基礎(chǔ)上找習(xí)題強(qiáng)化。

  2.一元函數(shù)微分學(xué)。求給定函數(shù)的導(dǎo)數(shù)與微分(包括高階導(dǎo)數(shù)),隱函數(shù)和由參數(shù)方程所確定的函數(shù)求導(dǎo),特別是分段函數(shù)和帶有絕對(duì)值的函數(shù)可導(dǎo)性的討論;利用洛比達(dá)法則求不定式極限;討論函數(shù)極值,方程的根,證明函數(shù)不等式;利用羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理證明有關(guān)命題,此類問題證明經(jīng)常需要構(gòu)造輔助函數(shù);幾何、物理、經(jīng)濟(jì)等方面的最大值、最小值應(yīng)用問題,解這類問題,主要是確定目標(biāo)函數(shù)和約束條件,判定所討論區(qū)間;利用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。

  3.一元函數(shù)積分學(xué)。計(jì)算題:計(jì)算不定積分、定積分及廣義積分;關(guān)于變上限積分的題:如求導(dǎo)、求極限等;有關(guān)積分中值定理和積分性質(zhì)的證明題;定積分應(yīng)用題:計(jì)算面積,旋轉(zhuǎn)體體積,平面曲線弧長,旋轉(zhuǎn)面面積,壓力,引力,變力作功等;綜合性試題。這一部分主要以計(jì)算應(yīng)用題出現(xiàn),只需多加練習(xí)即可。

  4.向量代數(shù)和空間解析幾何。計(jì)算題:求向量的數(shù)量積,向量積及混合積;求直線方程,平面方程;判定平面與直線間平行、垂直的關(guān)系,求夾角;建立旋轉(zhuǎn)面的方程;與多元函數(shù)微分學(xué)在幾何上的應(yīng)用或與線性代數(shù)相關(guān)聯(lián)的題目。這一部分的難度在考研數(shù)學(xué)中應(yīng)該是相對(duì)簡單的,找輔導(dǎo)書上的習(xí)題練習(xí),需要做到快速正確的求解。

  5.多元函數(shù)的微分學(xué)。判定一個(gè)二元函數(shù)在一點(diǎn)是否連續(xù),偏導(dǎo)數(shù)是否存在、是否可微,偏導(dǎo)數(shù)是否連續(xù);求多元函數(shù)(特別是含有抽象函數(shù))的一階、二階偏導(dǎo)數(shù),求隱函數(shù)的一階、二階偏導(dǎo)數(shù);求二元、三元函數(shù)的方向?qū)?shù)和梯度;求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數(shù)的微分學(xué)與前面向量代數(shù)與空間解析幾何的綜合題,應(yīng)結(jié)合起來復(fù)習(xí);多元函數(shù)的極值或條件極值在幾何、物理與經(jīng)濟(jì)上的應(yīng)用題;求一個(gè)二元連續(xù)函數(shù)在一個(gè)有界平面區(qū)域上的最大值和最小值。這部分應(yīng)用題多要用到其他領(lǐng)域的知識(shí),在復(fù)習(xí)時(shí)要引起注意,可以找一些題目做做,找找這類題目的感覺。

  6.多元函數(shù)的積分學(xué)。二重、三重積分在各種坐標(biāo)下的計(jì)算,累次積分交換次序;第一型曲線積分、曲面積分計(jì)算;第二型(對(duì)坐標(biāo))曲線積分的計(jì)算,格林公式,斯托克斯公式及其應(yīng)用;第二型(對(duì)坐標(biāo))曲面積分的計(jì)算,高斯公式及其應(yīng)用;梯度、散度、旋度的綜合計(jì)算;重積分,線面積分應(yīng)用;求面積,體積,重量,重心,引力,變力作功等。

  7.微分方程。求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,求線性常系數(shù)齊次和非齊次方程的特解或通解;根據(jù)實(shí)際問題或給定的條件建立微分方程并求解;綜合題,常見的是以下內(nèi)容的綜合:變上限定積分,變積分域的重積分,線積分與路徑無關(guān),全微分的充要條件,偏導(dǎo)數(shù)等。

  考研數(shù)學(xué)高數(shù)的重要概念

  1、函數(shù)極限連續(xù)

  ①正確理解函數(shù)的概念,了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性,理解復(fù)合函數(shù)、反函數(shù)及隱函數(shù)的概念。

 ?、诶斫鈽O限的概念,理解函數(shù)左、右極限的概念以及極限存在與左右極限之間的關(guān)系。掌握利用兩個(gè)重要極限求極限的方法。理解無窮小、無窮大以及無窮小階的概念,會(huì)用等價(jià)無窮小求極限。

 ?、劾斫夂瘮?shù)連續(xù)性的概念,會(huì)判別函數(shù)間斷點(diǎn)的類型。了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理和介值定理),并會(huì)應(yīng)用這些性質(zhì)。重點(diǎn)是數(shù)列極限與函數(shù)極限的概念,兩個(gè)重要的極限:limsinx/x=1,lim(1+1/x)=e,連續(xù)函數(shù)的概念及閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。難點(diǎn)是分段函,復(fù)合函數(shù),極限的概念及用定義證明極限的等式。

  2、一元函數(shù)微分學(xué)

 ?、倮斫鈱?dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程,理解函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系。

 ?、谡莆諏?dǎo)數(shù)的四則運(yùn)算法則和一階微分的形式不變性。了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的n階導(dǎo)數(shù),分段函數(shù)的一階、二階導(dǎo)數(shù)。會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)及反函數(shù)的導(dǎo)數(shù)。

 ?、劾斫獠?huì)用羅爾中值定理,拉格朗日中值定理,了解并會(huì)用柯西中值定理。

 ?、芾斫夂瘮?shù)極值的概念,掌握函數(shù)最大值和最小值的求法及簡單應(yīng)用,會(huì)用導(dǎo)數(shù)判斷函數(shù)的凹凸性和拐點(diǎn),會(huì)求函數(shù)圖形水平鉛直和斜漸近線。

 ?、萘私馇屎颓拾霃降母拍?,會(huì)計(jì)算曲率和曲率半徑及兩曲線的交角。

 ?、拚莆沼昧_必塔法則求未定式極限的方法,重點(diǎn)是導(dǎo)數(shù)和微分的概念,平面曲線的切線和法線方程函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,一階微分形式的不變性,分段函數(shù)的導(dǎo)數(shù)。羅必塔法則函數(shù)的極值和最大值、最小值的概念及其求法,函數(shù)的凹凸性判別和拐點(diǎn)的求法。難點(diǎn)是復(fù)合函數(shù)的求導(dǎo)法則隱函數(shù)以及參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)的計(jì)算。

  3、一元函數(shù)積分學(xué)

  ①理解原函數(shù)和不定積分和定積分的概念。

 ?、谡莆詹欢ǚe分的基本公式,不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法和分部積分法。

 ?、蹠?huì)求有理函數(shù)、三角函數(shù)和簡單無理函數(shù)的積分。

 ?、芾斫庾兩舷薹e分定義的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茲公式。

 ?、萘私鈴V義積分的概念并會(huì)計(jì)算廣義積分。

 ?、拚莆沼枚ǚe分計(jì)算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等。)重點(diǎn)是原函數(shù)與不定積分的概念及性質(zhì),基本積分公式及積分的換元法和分部積分法,定積分的性質(zhì)、計(jì)算及應(yīng)用。難點(diǎn)是第二類換元積分法,分部積分法。積分上限的函數(shù)及其導(dǎo)數(shù),定積分元素法及定積分的應(yīng)用。

  4、向量代數(shù)與空間解析幾何

 ?、倮斫庀蛄康母拍罴捌浔硎尽?/p>

 ?、谡莆障蛄康倪\(yùn)算(線性運(yùn)算、數(shù)量積、向量積、混合積),了解兩個(gè)向量垂直、平行的條件;掌握單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式以及用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法。

  ③掌握平面方程和直線方程及其求法,會(huì)利用平面直線的相互關(guān)系解決有關(guān)問題。

 ?、芾斫馇娣匠痰母拍?,了解常用二次曲面的方程及其圖形,會(huì)求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。

  ⑤了解空間曲線的參數(shù)方程和一般方程;了解空間曲線在坐標(biāo)平面上的投影,并會(huì)求其方程。


猜你喜歡:

1.考研數(shù)學(xué)高分刷題的技巧有哪些

2.考研數(shù)學(xué)復(fù)習(xí)沖刺階段應(yīng)該養(yǎng)成什么習(xí)慣

3.考研數(shù)學(xué)一復(fù)習(xí)經(jīng)驗(yàn)

4.考研高數(shù)口訣記憶

5.考研數(shù)學(xué)復(fù)習(xí)貴在長期積累貴在堅(jiān)持

6.前輩教你如何復(fù)習(xí)考研數(shù)學(xué)

考研數(shù)學(xué)高數(shù)易出證明題的知識(shí)點(diǎn)有哪些

高等數(shù)學(xué)在考研中,也被稱為微積分學(xué)。在高數(shù)中,很多知識(shí)點(diǎn)都比較容易出證明題。下面就是學(xué)習(xí)啦小編給大家整理的考研數(shù)學(xué)高數(shù)易出證明題的知識(shí)點(diǎn),希望對(duì)你有用! 考研數(shù)學(xué)高數(shù)易出證明題的知識(shí)點(diǎn) 一、數(shù)列極限的證明 數(shù)列極限的證明是數(shù)
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
3789239