初中三年級的數學教案(2)
初中三年級的數學教案(三)
一、教學目標
1. 通過觀察、猜想、比較、具體操作等數學活動,學會用計算器求一個銳角的三角函數值。
2.經歷利用三角函數知識解決實際 問題的過程,促進觀察、分析、歸納、交流等能力的發(fā)展。
3.感受數學與生活的密切聯系,豐富數學學習的成功體驗,激發(fā)學生繼續(xù)學習 的好奇 心,培養(yǎng)學生與他人合作交流的意識。
二、教材分析
在生活中,我們會經常遇到這樣的問題,如測量建筑物的高度、測量江河的寬度、船舶的定位等,要解決這樣的問題,往往要應用到三角函數知識。在上節(jié)課中已經學習了30°, 45°,60°角的三角函數值,可以進行一些特定情況下的計算,但是生活中的問題,僅僅依靠這三個特殊角度的三角函數值來解決是不可能的。本節(jié)課讓學生使用計算器求三角函數值,讓他們從繁重的計算中解脫出來,體驗發(fā)現并提 出問題、分析問題、探究解決方法直至最終解決問題的過程。
三、學校及學生狀況分析
九年級的學生年齡一般在15歲左右,在這個階段,學生以抽象邏輯思維為主要發(fā)展趨勢,但在很大程度上,學生仍然要依靠具體的經驗材料和操作活動來理解抽象的邏輯關系。另外,計算器的使用可以極大減輕學生的負擔。因此,依據教材中提供的背景材料,輔以計算器的使用,可以使學生更好地解決問題。
學生自小學起就開始使用計算器,對計算器的操作比較熟悉。同時,在前面的課程中學生已經學習了銳角三角函數的定義,30°,45°,60°角的三角函數值以及與它們相關的簡單計算,具備了學習本節(jié)課的知識和技能。
四、教學設計
(一)復習提問
1.梯子靠在墻 上,如果梯子與地面的夾角為60°,梯子的長度為3米,那么梯子底端到墻的距離有幾米?
學生活動:根據題意,求出數值。
2.在生活中,梯子與地面的夾角總是60°嗎?
不是,可以出現各種角度,60°只是一種特殊現象。
圖1(二)創(chuàng)設情境引入課題
1?如圖1,當登山纜車的吊箱經過點A到達點B時,它走過了200 m。已知纜車的路線與平面的夾角為∠A=16 °,那么纜車垂直上升的距離是多少?
哪條線段代表纜車上升的垂直距離?
線段BC。
利用哪個直角三角形可以求出BC?
在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。
你知道sin 16°是多少嗎?我們可以借助科學計算器求銳角三角形的三角函數值。 那么,怎樣用科學計算器求三角函數呢?
用科學計算器求三角函數值,要用sin cos和tan鍵。教師活動:(1)展示下表;(2)按表口述,讓學生學會求sin16°的值。按鍵順序顯示結果sin 16°sin16=sin 16°=0?275 637 355
學生活動:按表中所列順序求出sin 16°的值。
你能求出cos 42°,tan 85°和sin 72°38′25″的值嗎?
學生活動:類比求sin 16°的方法,通過猜想、討論、相互學習,利用計算器求相應的三角函數值(操作程序如下表):
按鍵順序顯示結果cos 42°cos42 =cos 42°=0?743 144 825tan 85°tan85=tan 85°=11?430 052 3sin 72°38′25″sin72D′M′S
38D′M′S2
5D′M′S=sin 72°38′25″→
0?954 450 321
師:利用科學計算器解決本節(jié)一開始的問題。
生:BC=200sin 16°≈52?12(m)。
說明:利用學生的學習興趣,鞏固用計算器求三角函數值的操作方法。
(三)想一想
師:在本節(jié)一開始的問題中,當纜車繼續(xù)由點B到達點D時,它又走過了 200 m,纜車由點B到達點D的行駛路線與 水平面的夾角為∠β=42°,由此你還能計算什么?
學生活動:(1)可以求出第二次上升的垂直距離DE,兩次上升的垂直距離之和,兩次經過的水平距離,等等。(2)互相補充并在這個過程中加深對三角函數的認識。
(四)隨堂練習
1.一個人由山底爬到山頂,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高(結果精確到0.1 m)。
2.如圖2,∠DAB=56°,∠CAB=50°,AB=20 m,求圖中避雷針CD的長度(結果精確到0.01 m)。
圖2圖3
(五)檢測
如圖3,物華大廈離小偉家60 m,小偉從自家的窗中眺望大廈,并測得大廈頂部的仰角是45°,而大廈底部的俯角是37°,求大廈的高度(結果精確到0?1 m)。
說明:在學生練習的同時,教師要巡視指導,觀察學生的學習情況,并針針對學生的困難給予及時的指導。
(六)小結
學生談學習本節(jié)的感受,如本節(jié)課學習了哪些新知識,學習過程中遇到哪些困難,如何解決困難,等等。
(七)作業(yè)
1.用計算器求下列各式的值:
(1)tan 32°;(2)cos 24?53°;(3)sin 62°11′;(4)tan 39°39′39″。
圖42?如圖4,為了測量一條河流的寬度,一測量員在河岸邊相距180 m的P,Q兩點分別測定對岸一棵樹T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河寬(結果精確到1 m)。
五、教學反思
1.本節(jié)是學習用計算器求三角函數值并加以實際應用的內容,通過本節(jié)的學習,可以使學生充分認識到三角函數知識在現實世界中有著廣泛的應用。本節(jié)課的知識點不是很多,但是學生通過積極參與課堂,提高了分析問題和解決問題的能力,并 且在意志力、自信心和理性精神 等方面得到了良好的發(fā)展。
2.教師作為學生學習的組織者、引導者、合作者和幫助者,依據教材特點創(chuàng)設問題情境,從學生已有的知識背景和活動經驗出發(fā),幫助學生取得了成功。
有關初中三年級的數學教案推薦: