初二數(shù)學(xué)的學(xué)習(xí)方法與技巧有哪些
初二數(shù)學(xué)的學(xué)習(xí)方法與技巧有哪些
想要提高初二數(shù)學(xué)的成績,掌握好的學(xué)習(xí)方法和技巧必不可少。下面是小編分享的初二數(shù)學(xué)的學(xué)習(xí)方法與技巧,一起來看看吧。
初二數(shù)學(xué)的學(xué)習(xí)方法與技巧
一、該記的記,該背的背,不要以為理解了就行
有的同學(xué)認為,數(shù)學(xué)不像英語、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說你只講對了一半。數(shù)學(xué)同樣也離不開記憶。試想一下,小學(xué)的加、減、乘、除運算要不是背熟了“乘法九九表”,你能順利地進行運算嗎?盡管你理解了乘法是相同加數(shù)的和的運算,但你在做9*9時用九個9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數(shù)學(xué)中還有大量的規(guī)定需要記憶,比如規(guī)定(a≠0)等等。因此,我覺得數(shù)學(xué)更像游戲,它有許多游戲規(guī)則(即數(shù)學(xué)中的定義、法則、公式、定理等),誰記住了這些游戲規(guī)則,誰就能順利地做游戲;誰違反了這些游戲規(guī)則,誰就被判錯,罰下。因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個公式,將會對今后的學(xué)習(xí)造成很大的麻煩,因為今后的學(xué)習(xí)將會大量地用到這三個公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時再加深理解。打一個比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
二、幾個重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學(xué)就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個步驟。如果學(xué)會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對數(shù)方程、線性方程組、、參數(shù)方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實中的大量實際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進而學(xué)好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實當(dāng)中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點去構(gòu)建有關(guān)的方程,進而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
3、“對應(yīng)”的思想
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對應(yīng)”擴展到對應(yīng)一種形式,對應(yīng)一種關(guān)系,等等。比如我們在計算或化簡中,將對應(yīng)公式的左邊,對應(yīng)a,y對應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。這就是運用“對應(yīng)”的思想和方法來解題。初二、初三我們還將看到數(shù)軸上的點與實數(shù)之間的一一對應(yīng),直角坐標平面上的點與一對有序?qū)崝?shù)之間的一一對應(yīng),函數(shù)與其圖象之間的對應(yīng)。“對應(yīng)”的思想在今后的學(xué)習(xí)中將會發(fā)揮越來越大的作用
三、自學(xué)能力的培養(yǎng)是深化學(xué)習(xí)的必由之路
在學(xué)習(xí)新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學(xué)是一門能自學(xué)的學(xué)科,自學(xué)成才最典型的例子就是數(shù)學(xué)家華羅庚。
我們在課堂上聽老師講解,不光是學(xué)習(xí)新知識,更重要的是潛移默化老師的那種數(shù)學(xué)思維習(xí)慣,逐漸地培養(yǎng)起自己對數(shù)學(xué)的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學(xué)生物理學(xué)得好,不是我教出來的,而是他們自己悟出來的。當(dāng)然,校長是謙虛的,但他說明了一個道理,學(xué)生不能被動地學(xué)習(xí),而應(yīng)主動地學(xué)習(xí)。一個班里幾十個學(xué)生,同一個老師教,差異那么大,這就是學(xué)習(xí)主動性問題了。
自學(xué)能力越強,悟性就越高。隨著年齡的增長,同學(xué)們的依賴性應(yīng)不斷減弱,而自學(xué)能力則應(yīng)不斷增強。因此,要養(yǎng)成預(yù)習(xí)的習(xí)慣。在老師講新課前,能不能運用自己所學(xué)過的已掌握的舊知識去預(yù)習(xí)新課,結(jié)合新課中的新規(guī)定去分析、理解新的學(xué)習(xí)內(nèi)容。由于數(shù)學(xué)知識的無矛盾性,你所學(xué)過的數(shù)學(xué)知識永遠都是有用的,都是正確的,數(shù)學(xué)的進一步學(xué)習(xí)只是加深拓廣而已。因此,以前的數(shù)學(xué)學(xué)得扎實,就為以后的進取奠定了基礎(chǔ),就不難自學(xué)新課。同時,在預(yù)習(xí)新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學(xué)為什么聽老師講新課時總有一種似懂非懂的感覺,或者是“一聽就懂、一做就錯”,就是因為沒有預(yù)習(xí),沒有帶著問題學(xué),沒有將“要我學(xué)”真正變?yōu)?ldquo;我要學(xué)”,力求把知識變?yōu)樽约旱?。學(xué)來學(xué)去,知識還是別人的。檢驗數(shù)學(xué)學(xué)得好不好的標準就是會不會解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學(xué)好數(shù)學(xué)的必要條件,能獨立解題、解對題才是學(xué)好數(shù)學(xué)的標志。
四、自信才能自強
在考試中,總是看見有些同學(xué)的試卷出現(xiàn)許多空白,即有好幾題根本沒有動手去做。當(dāng)然,俗話說,藝高膽大,藝不高就膽不大。但是,做不出是一回事,沒有去做則是另一回事。稍為難一點的數(shù)學(xué)題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才顯露出條件和結(jié)論之間的某種聯(lián)系,整個思路才會明朗清晰起來。你都沒有動手去做,又怎么知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復(fù)你。也同樣要先分析、研究,找到正確的思路后才向你講授。不敢去做稍為復(fù)雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現(xiàn)。在數(shù)學(xué)解題中,自信心是相當(dāng)重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能夠用自己所學(xué)過的知識把它解出來。要敢于去做題,要善于去做題。這就叫做“在戰(zhàn)略上藐視敵人,在戰(zhàn)術(shù)上重視敵人”。
具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性,抓住這一道題與這一類題不同的地方。數(shù)學(xué)的題目幾乎沒有相同的,總有一個或幾個條件不盡相同,因此思路和解題過程也不盡相同。有些同學(xué)老師講過的題會做,其它的題就不會做,只會依樣畫瓢,題目有些小的變化就干瞪眼,無從下手。當(dāng)然,做題先從哪兒下手是一件棘手的事,不一定找得準。但是,做題一定要抓住其特殊性則絕對沒錯。選擇一個或幾個條件作為解題的突破口,看由這個條件能得出什么,得出的越多越好,然后從中選擇與其它條件有關(guān)的、或與結(jié)論有關(guān)的、或與題目中的隱含條件有關(guān)的,進行推理或演算。一般難題都有多種解法,條條大路通北京。要相信利用這道題的條件,加上自己學(xué)過的那些知識,一定能推出正確的結(jié)論。
數(shù)學(xué)題目是無限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識,掌握了必要的數(shù)學(xué)思想和方法,就能順利地對付那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完。關(guān)鍵是你有沒有培養(yǎng)起良好的數(shù)學(xué)思維習(xí)慣,有沒有掌握正確的數(shù)學(xué)解題方法。當(dāng)然,題目做得多也有若干好處:一是“熟能生巧”,加快速度,節(jié)省時間,這一點在考試時間有限時顯得很重要;一是利用做題來鞏固、記憶所學(xué)的定義、定理、法則、公式,形成良性循環(huán)。
解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄;只有自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學(xué)習(xí),才有希望攻克難關(guān),迎來屬于自己的春天。
初二數(shù)學(xué)成績下滑怎么辦
初一沒學(xué)好,還可跟上去
經(jīng)過一年的初中學(xué)習(xí),有的同學(xué)能很快適應(yīng)初中教學(xué),通過努力,進步很大;有的同學(xué)不大適應(yīng),自信心下降,與其他同學(xué)拉大了差距。
蔡明智說,有的同學(xué)簡單地認為,初一年級數(shù)學(xué)沒學(xué)好,就學(xué)不好初二數(shù)學(xué),其實不然。即使以前沒學(xué)好,但如果學(xué)好新知識,依然能運用這些知識完成相關(guān)習(xí)題。
他說,在學(xué)習(xí)初二數(shù)學(xué)的同時,把以前的知識好好補一補,成績一樣可以趕上去。
尋找分化原因,不可亂投醫(yī)
事實上,數(shù)學(xué)成績“分化”有一個漸進的過程,每個學(xué)段都有不同的分化點,只是在初二特別明顯。比如到初一下學(xué)期已經(jīng)有了平面幾何(相交線與平行線、三角形兩章)、解析幾何(平面直角坐標系的初步知識)的內(nèi)容,對于部分邏輯思維能力和空間想象能力較弱的同學(xué),學(xué)習(xí)這部分就會感到吃力,但此時的成績可能不會有明顯的退步,因為積累的問題還不算多。
但到了初二“畫一次函數(shù)的圖像、分析圖像的特性與函數(shù)解析式之間的關(guān)系”時,前面在“平面直角坐標系”中留下的隱患就暴露無遺,一個又一個問題令學(xué)生茫然不知所措,成績會明顯下滑。“若了解成績下滑的原因和起點,補上平面直角系相關(guān)知識,學(xué)習(xí)‘函數(shù)中的問題’就會輕松得多。”蔡明智說,一些家長和同學(xué)認識不到這一點,盲目到校外培優(yōu)班“補習(xí)”,卻不從根本上尋找原因,導(dǎo)致學(xué)習(xí)分化越來越嚴重。
以勤補拙,提高數(shù)學(xué)成績
蔡明智認為,初二年級部分學(xué)生數(shù)學(xué)成績滑坡,可能有兩種因素:智力和非智力因素。
智力因素包括感知、接受能力,大腦的記憶、識別、重現(xiàn)能力和思維的理解、歸納、綜合運用等方面的能力;非智力因素包括學(xué)習(xí)習(xí)慣的養(yǎng)成、環(huán)境的干擾和影響等等。
他說,如果是“智力因素”,建議這些學(xué)生以勤補拙,博聞則強知,熟能后生巧;若是非智力因素造成成績下滑,則應(yīng)及時改正,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。具體來講,包括以下內(nèi)容:
記憶習(xí)慣。對數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時再加深理解。
預(yù)習(xí)習(xí)慣。在預(yù)習(xí)中發(fā)現(xiàn)問題,帶著問題進課堂。
適應(yīng)老師的習(xí)慣。學(xué)會適應(yīng)老師,長大了就比較容易適應(yīng)社會,不會稍不如意就埋怨環(huán)境。
準備錯題集的習(xí)慣。每次考試之后整理錯題,找到可以接受的同類型題、同等程度的知識點研究一下,再把同類型攻下來。
自己出考試題的習(xí)慣。不要覺得考試很神秘。你認為老師會考什么,就自己出個3、5題,堅持下來,會發(fā)現(xiàn)老師“考不倒”你。
避免初中數(shù)學(xué)解題錯誤的方法
(一)課前準備要有預(yù)見性
預(yù)防錯誤的發(fā)生,是減少初中學(xué)生解題錯誤的主要方法。講課之前,教師如果能預(yù)見到學(xué)生學(xué)習(xí)本課內(nèi)容可能產(chǎn)生的錯誤,就能夠在課內(nèi)講解時有意識地指出并加以強調(diào),從而有效地控制錯誤的發(fā)生。例如,講解方程x/0.7-(0.17-0.2x)/0.03=1之前,要預(yù)見到本題要用分式的基本性質(zhì)與等式的性質(zhì),兩者有可能混淆,因而要在復(fù)習(xí)提問時準備一些分數(shù)的基本性質(zhì)與等式的性質(zhì)的練習(xí),幫助學(xué)生弄清兩者的不同,避免產(chǎn)生混亂與錯誤。因此備課時,要仔細研究教科書正文中的防錯文字、例題后的注意、小結(jié)與復(fù)習(xí)中的應(yīng)該注意的幾個問題等,同時還要揣摸學(xué)生學(xué)習(xí)本課內(nèi)容的心理過程,授業(yè)解惑,使學(xué)生預(yù)先明了容易出錯之處,防患于未然。如果學(xué)生出現(xiàn)問題而未查覺,錯誤沒有得到及時的糾正,則遺患無窮,不僅影響當(dāng)時的學(xué)習(xí),還會影響以后的學(xué)習(xí)。因此,預(yù)見錯誤并有效防范能夠為揭示錯誤、消滅錯誤打下基礎(chǔ)。
(二)課內(nèi)講解要有針對性
在課內(nèi)講解時,要對學(xué)生可能出現(xiàn)的問題進行針對性的講解。對于容易混淆的概念,要引導(dǎo)學(xué)生用對比的方法,弄清它們的區(qū)別和聯(lián)系。對于規(guī)律,應(yīng)當(dāng)引導(dǎo)學(xué)生搞清它們的來源,分清它們的條件和結(jié)論,了解它們的用途和適用范圍,以及應(yīng)用時應(yīng)注意的問題。教師要給學(xué)生展示揭示錯誤、排除錯誤的手段,使學(xué)生會識別錯誤、改正錯誤。要通過課堂提問及時了解學(xué)生情況,對學(xué)生的錯誤回答,要分析其原因,進行針對性講解,利用反面知識鞏固正面知識。課堂練習(xí)是發(fā)現(xiàn)學(xué)生錯誤的另一條途徑,出現(xiàn)問題,及時解決。總之,要通過課堂教學(xué),不僅教會學(xué)生知識,而且要使學(xué)生學(xué)會識別對錯,知錯能改。
(三)課后講評要有總結(jié)性
要認真分析學(xué)生作業(yè)中的問題,總結(jié)出典型錯誤,加以評述。通過講評,進行適當(dāng)?shù)膹?fù)習(xí)與總結(jié),也使學(xué)生再經(jīng)歷一次調(diào)試與修正的過程,增強識別、改正錯誤的能力。
猜你感興趣:
1.初二各科優(yōu)秀的學(xué)習(xí)方法有哪些
2.如何學(xué)好初二數(shù)學(xué)的學(xué)習(xí)方法