有關五年級數學論文
數學是人類寶貴的知識,小學數學是非常重要的一個過渡期,應當予以重視,尤其是五年級數學。下面是學習啦小編帶來的關于五年級數學論文的內容,歡迎閱讀參考!
五年級數學論文篇1
淺談提高小學五年級數學課堂教學效率的方法
一、課堂導入的科學設計會激發(fā)學生的學習興趣
課堂教學的關鍵環(huán)節(jié)在于課堂導入,一節(jié)課開始之前,學生的思想活動十分復雜難以約束,如何使學生從雜亂的信息中收攝心神,使思緒轉回到課堂教學中來,是教師相當頭痛的一個問題,很多學生在課堂正式教學開始之后的很長時間里,思緒依然游走課堂教學之外,始終跟不上教師的講課進度,這種情況的產生就需要一個有力的課堂導入環(huán)節(jié)去解決。另外,有的學生對本節(jié)課要講的內容沒有清楚認識,常常產生學習茫然,一節(jié)課學下來不知道自己在學什么,應該掌握哪些方法,學習缺乏目的性。
優(yōu)質的課堂導入可以使學生的思維進入課堂教學模式,學生的興趣點被老師吸引,學生的積極性被老師調動,在接下來的授課中,學生會根據導入環(huán)節(jié)中的內容進行積極思考,主動探求,不斷嘗試尋找答案,教師的教學目的得以實現(xiàn)。在小學五年級數學課堂的具體教學中,教師可以采取提問式的方法引導學生進入課堂,也可以采取故事法或情景法將學生的內在經驗與數學課堂形成對應,由于數學課程自身的抽象性導致了教學環(huán)節(jié)與生活環(huán)節(jié)常常脫節(jié),學生感到數學枯燥無趣,教師恰恰可以利用學生的這種心理,積極建立數學學科與實際生活的聯(lián)系,用實際生活中的數學問題引發(fā)學生對本節(jié)課的好奇心,使學生懷著“為什么?”“答案到底是什么?”的學習心理走進課堂,學生思維會因此緊緊跟隨老師,并對授課內容不斷進行反復猜想,幾十分鐘的教學活動豐富而輕松地結束。
二、確立學生的主體地位,啟發(fā)學生自主學習
在以往的小學數學教學中,一直是教師充當課堂的主要角色,學生一直處于被動學習的地位,這樣不僅使學生的學習積極性受到壓抑,更重要的是不利于培養(yǎng)學生的自主學習意識,學生會在老師的要求下完成各種任務,對于這些任務的真正意義卻無從思考,課堂氣氛常常死氣沉沉,緊張嚴肅。又因為數學科學的抽象性、理論性、思維性的特征,小學生常常產生“怕數學”“躲學習”“數學差”的惡性循環(huán),這些現(xiàn)象的產生都是由于傳統(tǒng)數學課堂師生關系的模式造成的。
要提高小學數學課堂教學效率,首先要轉變師生關系,確立學生的主體地位,使學生的學習主動性得以調動出來,讓學生意識到自己是課堂教學的主要載體,是教學活動的主動參與者,就會改變以往被動接受的不良局面。
教師在教學活動中盡量引導學生主動思考,積極發(fā)言,對于說錯的學生仍要繼續(xù)鼓勵,不要亂加批評,不要擺出師道尊嚴,打擊學生的學習積極性。例如,在人教版小學五年級數學課程內有一章關于“多邊形面積”的求法,如果直接灌輸學生公式會使學生覺得難以理解,不妨使學生通過對“鉛筆盒表面”的測量形成長和寬的認識,再引導學生積極探討如何通過長寬信息求得鉛筆盒表面的面積,在學生的探討結果之后進行引導啟發(fā)式教學,會收到更好的教學效果。
三、教學方法的選取一定要靈活
很多小學階段的數學教師最頭痛的就是如何使小學生接受數學的抽象計算、抽象邏輯、抽象概念。在具體講授小學數學知識的教學課堂上,選取不恰當的教學方法會加大學生的理解難度,比如在相關幾何基礎知識部分,如果以講授法進行教學恐怕就不會收到良好的教學效果,但如果采取實物教學法,使學生在直觀的幾何圖形、幾何物體的面前產生感性認識,繼而再形成理性概念,就會收到事半功倍的效果。
再如,小學五年級數學課本中有一章關于“廣角植樹”的探究教學內容,教師為了實現(xiàn)最佳的教學效果,可以采用模擬法的教學方法,帶領學生來到操場,以小旗或其他道具模擬樹木,帶著問題在實踐中進行教學,使學生成為該數學問題的“模擬研究員”,對該數學答案的得出進行了全面探求,這對于學生學習數學的意義重大,靈活選取適合的教學方法,根據實際需要創(chuàng)設合理的教學環(huán)境,都是小學數學教學提高課堂效率,促進學生感知數學、應用數學、學好數學的重要途徑。一個科學合理有效的教學方法的選取是邁向教學成功的關鍵一步。
隨著新課標改革的不斷深入,課堂的內涵會更加豐富,課堂效果的提高會獲得更多實現(xiàn)途徑,同時也會面臨更多困境和阻礙,如何加強課堂效率的提高,如何使學生在數學課堂上獲得更多的知識和能力,是需要所有小學數學老師通過不懈努力去探索的。
五年級數學論文篇2
淺談教育均衡發(fā)展在五年級數學教學應用
摘 要:教育均衡發(fā)展就是培養(yǎng)學生各個方面的意識、思維、能力,讓學生感到自己成功了,有成就了,發(fā)展了。如何在五年級數學教學中讓學生均衡發(fā)展呢?本文從設置問題情境激發(fā)學生創(chuàng)新意識,誘導學生成功;抓住典型題材發(fā)展學生多向思維,培養(yǎng)學生成就感;用好現(xiàn)有教材提高學生解決實際問題的能力和反思能力,促進學生發(fā)展三個方面探討在五年級數學教學中促進學生均衡發(fā)展。
關鍵詞:教育均衡發(fā)展;數學應用題;教學探究
教育均衡發(fā)展是根據學生的不同個性特點,采取不同的教學方法,培養(yǎng)學生的各種意識、思維和能力,讓學生有所成功、有所成就、有所發(fā)展。而五年級數學應用教學是一至四年級的數學知識學習后,利用這些知識解決實際問題的能力,在解決實際問題中,培養(yǎng)學生的創(chuàng)新意識、多向思維、解決實際問題能力和反思能力,進而促進學生人人能成功,個個有成就,方方面面均衡發(fā)展。具體做法如下:
一、設置問題情境激發(fā)學生創(chuàng)新意識,誘導學生成功
數學教學中首先應喚起學生的創(chuàng)新意識,使之想創(chuàng)造。而只有在強烈的創(chuàng)新意識引導下,學生才會產生強烈的成功感。要喚起學生的創(chuàng)新意識,須樹立創(chuàng)新目標,充分發(fā)揮創(chuàng)新潛力和聰明才智,釋放創(chuàng)新激情。問題是思維的起點,有了問題,思維才有方向。有了問題,思維才有動力。而小學數學教學中常常用“問題情境”激發(fā)學生的創(chuàng)新意識,使他們產生探索新問題、解決新問題的心理傾向和愿望,最后達到成功。例如,當學生學習了長方形和正方形的面積后,我出了這樣一題讓學生討論:一個長方形的長增加了3厘米,寬減少3厘米,所得的長方形面積與原來面積一樣嗎?這一問,充分引起了學生的興趣,大家議論紛紛,爭著回答。一部分學生說一樣大,另一部分學生雖然覺得這個答案不對,但又不知怎樣才能說明,便都把眼睛看著老師,迫切想得知結果。這時,教師不要急于表態(tài),因為此時學生大腦產生興奮,大腦在興奮期里最容易爆發(fā)出思維的火花。所以,要把握時機,讓他們在練習紙上畫畫拼拼比較,很快就得出了自己的正確答案。結果并不重要,而過程卻是創(chuàng)新能力的經驗。因此,要進一步地引導。提問:你們發(fā)現(xiàn)了什么規(guī)律?學生興趣很高,繼續(xù)動手、動腦、討論、探索。紛紛成功地答道:所得到長方形的周長相等。如果長與寬之差越小的長方形面積越大;當長、寬相等時,便成了正方形,正方形的面積最大。
二、抓住典型題材發(fā)展學生多向思維,培養(yǎng)學生成就感
發(fā)展學生的多向思維,要落實在具體的課堂教學之中,五年級數學教學也是如此。教學中,教師如能抓住一些典型題型,分層遞進,對發(fā)展學生的多向思維,培養(yǎng)學生的成就感是十分有益的。
如:學習了分數的意義和性質后,老師在講解應用題型:“一個三角形三個內角度數的比是3∶2∶1,按角分這個三角形是( )角的三角形。”這一類應用題時,通過分層遞進,既引導學生自己解決了問題,發(fā)展了學生的多向思維,讓學生感到了自己有了成就。
第一向層次思維:求出三個內角判斷法。這是學生開始時常用的方法。
第二向層次思維:求一個角判斷法。“我們能不能只求出一個角就能判斷出這個三角形是什么角的三角形呢?”學生通過思考懂得:只要求出最大的角,因為最大的角是90°,所以這個三角是直角三角形。這一層次比第一層次學生思維上進了一層。
第三向層次思維:直接判斷法。“我們能不能不求出任何一個角,直接從三個角的比份上判斷這個三角形是什么角的三角形呢?”一石激起千層浪,學生的思維一下子被調動起來。通過討論,學生懂得:因為3=2+1,最大的角的度數等于其他兩個銳角的和,所以可以判斷這個三角形是直角三角形。在此基礎上,教師可讓學生自己總結出自己的成就:
1.如果最大角的比份等于其他兩個角的比份之和,則這個三角形為直角三角形。
2.如果最大角的比份大于其他兩個角的比份之和,則這個三角形為鈍角三角形。
3.如果最大角的比份小于其他兩個角的比份之和,則這個三角形為銳角三角形。
學生的多向思維,是靠教師的指導,學生的自主探索得出結果,不是教師的直接說出,關鍵要讓學生動手、動腦、動口。
三、用好現(xiàn)有教材提高學生解決實際問題的能力和反思能力,促進學生發(fā)展
現(xiàn)行的小學數學教材已形成一個較為完整的知識體系。如何充分發(fā)揮現(xiàn)行五年級數學現(xiàn)有教材的作用,提高學生的解決實際問題能力和反思能力呢?實踐證明,通過改編例題或習題,引導學生思考、辨析,可以起到事半功倍之效。
(一)改編例題引發(fā)思維,培養(yǎng)學生解決實際問題的能力。
要培養(yǎng)學生用所學知識解決實際問題的能力,在五年級數學教學中,如果能真正把“用教材教”落實到實處,通過改編例題、習題的方式發(fā)散學生的思維,對培養(yǎng)學生分析問題和解決問題的能力將會起到積極的作用。如在教學應用題“一段公路,甲隊單獨修10天完成,乙隊單獨修15天完成。兩隊合修幾天可以完成?”這一工程問題時,在學生掌握了此道題解題思路和方法的基礎上,可以將“乙隊單獨修15天完成”改成:①乙隊單獨修比甲隊多用5天。②乙隊單獨修的時間是甲隊的1.5倍。③乙隊的工作效率是甲隊的2/3。還可將問題改為:①兩隊合修幾天完成這段公路的?②兩隊合修幾天后還剩這段路的?③甲獨修2天后,剩下的乙獨修還需幾天?這樣圍繞例題這一中心發(fā)散,例題的作用得到充分的發(fā)揮。“源于教材,高于教材”的教學機制,在本堂課得到充分體現(xiàn),促進學生的發(fā)展。
(二)改編例題促思辨,提高反思能力。
反思是一種學習和生活的策略。學生在學習新知的過程中總會發(fā)生這樣那樣的錯誤。在小學數學教學中,如能適時地運用改編例題、習題促進學生進行思考、辨析,進行前饋控制或反饋矯正,一方面可以達到有效防治錯誤的目的,另一方面還可以提高學生自我反思的能力。
1.前饋控制。即教師根據教學規(guī)律或班級的實際情況,將學生在解答有關問題時易錯的一些情況,通過改編例題、習題的方式讓學生進行對比、辨析,防患于未然。
2.反饋矯正。即當學生在練習中發(fā)生錯誤后,教師根據學生的情況,通過改編例題或習題讓學生繼續(xù)練習,學生在繼續(xù)練習中產生覺悟,從而有效地糾正學生的錯誤認識,提高反思能力。
總之,在五年級數學應用題教學中實施教育均衡發(fā)展思想,我們要善于設置問題情境激發(fā)學生創(chuàng)新意識,誘導學生成功;抓住典型題材發(fā)展學生多向思維,培養(yǎng)學生成就感;用好現(xiàn)有教材提高學生解決實際問題的能力和反思能力,促進學生發(fā)展。把教育均衡發(fā)展的思想落實到具體的數學課堂教學中去。
五年級數學論文篇3
試談小學五年級數學變式教學
摘要:變式教學有比較久的歷史,也是我國小學數學課堂教學的典型特點之一。在小學五年級課堂中選用變式教學能夠為小學生創(chuàng)設一個學習的平臺,提升小學生處理問題的水平以及思維的活躍度。然而,目前在我國關于變式教學的探究并不多,本文筆者結合國內相關專家、學者的看法,根據自己多年從教的經驗,對小學五年級數學變式教學進行了探究,以供參考。
關鍵詞:五年級;數學;變式教學
在傳統(tǒng)的教學中"灌輸式"與"機械式"的教學方法中有很大的缺陷,它會使讓數學課堂教學氛圍變得無比沉悶,在很大的程度上壓制了小學生的學習興趣以及學習能力的提高,所以變式教學的探究意義也是重大的。
1.數學課堂教學中變式教學的內涵
在數學課堂教學中結合不一樣的課堂內容以及課堂環(huán)境,運用變式的形式進行數學知識的產生、發(fā)展和組成過程的規(guī)律總結,對于數學的概念、公式和習題等的一系列從它們不同的情形、層次、角度以及背景的轉變,有目的地啟發(fā)小學生在"變"中尋找到"不變"的實質,在"不變"中找出規(guī)律,進一步實現(xiàn)讓小學生獨自、自覺的決絕遇到數學問題,從而達到提升小學生數學水平和能力的目的. 這就是變式教學。
2.小學數學教學中變式教學的應用分類
通常在小學數學教學過程中,變式教學可以從水平層面、垂直層面將其分為4個類型:歸納變式、應用變式、深度變式和廣度變式。歸納變式及應用變式兩者是由課文情境的介紹轉變而成的,兩者都歸屬于情境變式;而深度變式以及廣度變式兩者是由對課文的例題、習題的介紹來涉入的,兩者都從屬于在問題變式當中。
2.1小學數學變式教學中的歸納變式。小學數學變式教學中的"歸納變式"指的就是在數學課堂教學的過程中數學教師結合設計不一樣的數學課堂教學氛圍,帶領小學生通過解決不同的數學問題的實際情境的改變來歸納出"不變"的小學數學定義和通則。
2.2小學數學變式教學中的應用變式。小學數學變式教學中的"應用變式"一樣是結合不同的數學問題的實際情境的改變,而不一樣的是小學生將掌握了的定義和通則使用到更廣的實際情境當中去。例如,用小學五年級數學中的 "多邊形面積的計算"問題為例:①一塊平行四邊的木板,底為60cm,高為80cm,求木板的面積是幾平方厘米呢?②一塊平行四邊形木板,底為30cm,高為60cm,請問木板的面積一共是幾平方厘米?③測量且計算出下面的平行四邊形的面積。從①到②題不難發(fā)現(xiàn),其情境是沒有發(fā)生變化的,僅僅是數字進行了改變,而③提則在解題的步驟方面有增加,其中不僅要測量出平行四邊形的底與高,還要再進行面積的計算,而這三題相同的地方是在于應用平行四邊形的公式來應對各種問題的。其目的是在于讓小學五年級的學生可以迅速和靈活地應用平行四邊形面積的計算方法。
2.3小學數學變式教學中的深度變式。上文已經提到,深度變式是問題變式中的一種,深度變式的設計主要是將數學問題進行深入講解,它追求的不是題目的數量,而是題目的掌握質量,加深變式的空間, 通過對問題本質概念的方式的改變,促使獲取更多類似的數學概念和技巧。例如,再以小學五年級數學 "多邊形面積的計算"的家庭作業(yè)來分析:①建設一個平行四邊形的水池,底為80m,高為30m,請算出水池的面積是多少平方米?②一塊平行四邊形的鐵板,底是60cm,高50cm,每一個平方厘米是2.5元,請算出這一塊鐵板一共要多少錢呢?③一個平行四邊形的花壇,底為120m,高為50m,假如將花壇的底與高各增加20m和30m,請計算這個花壇的面積是多少平方米?比原來的一共增加了幾平方米?以上這三題都是和平行四邊形面積的計算有關,同時這三題是以逐步遞增的方式在"變",難度步步加大,做題思維的步驟逐漸增多,其主要目的是幫助小學生一步步掌握題中的解題辦法與數量結構。
2.4小學數學變式教學中廣度變式。目前,廣度變式的設計主要目的就是在于小學生多角度的掌握數學知識結構的基礎上,增強數學知識間的融通度,擴展變式的空間,通過變化數學問題的外部概念的方式,也就是說結合變式題組來獲得數學技巧的鞏固。依然以"多邊形面積的計算"作為例子,給小學生布置的課后作業(yè):①校園內一個平行四邊形的操場,底是120m,高60m,用來擺放桌子,桌子占地的長為1m,寬為0.5m,請計算出操場最多能夠放下多少張桌子? ②學校有一個平行四邊形的乒乓球場,底為72m,高為34m,乒乓球桌的所占的地是15㎡,請算出這一個乒乓球場能夠放下多少張球桌呢?③小李家里有一塊平行四邊形的泡沫板,底是64m,高是42cm,請問最多能夠改成幾塊底為34cm,高為22cm的泡沫板呢?這三個數學題目的結構與解題思路是一樣,也都是一個大的面積計算里面含有一個或是幾個小面積的計算,這一類數學習題的設置能夠有利于小學生把這一概念進行結構化,實現(xiàn)小學生對其進行多個角度的理解、掌握,在小學生的腦海中形成一個數學知識網絡,有利于今后數學知識的運用。
3.結束語
綜上所述,筆者結合自己多年從事小學五年級數學的教學經驗,進行了對小學五年級數學教學中采用變式教學的探究。事實已經證明,在實踐中運用變式教學可以更好的讓小學生理解并掌握小數學知識,小學生的數學成績也會明顯得到提高。同時從小學生的相關表現(xiàn)來看,很多小學生是喜歡這種變式教學方法的,因為它可以逐步引導學生戰(zhàn)勝問題,可以讓小學生逐漸的獲得成就感,從而提升小學五年級學生學習數學的興趣和積極。以上結果都證明在小學五年級數學教學中實施變式教學方法是有意義的。
參考文獻
[1]張奠宙.中國數學雙基教學[M].上海:上海教育出版社,2010. 7-13.
[2]聶必凱.數學變式教學的探索性研究[D].[博士學位論文].上海:上海華東師范大學,2011.
猜你喜歡:
3.5年級數學小論文
有關五年級數學論文
上一篇:五年級獲獎數學小論文
下一篇:五年級數學論文范文