特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦>論文大全>畢業(yè)論文>理學(xué)論文>數(shù)學(xué)>

數(shù)學(xué)建模教學(xué)優(yōu)秀論文

時(shí)間: 斯娃805 分享

  數(shù)學(xué)建模是指人們?cè)趯?duì)實(shí)際問(wèn)題的研究中,用數(shù)學(xué)語(yǔ)言和符號(hào)表達(dá)出其中所含的內(nèi)在規(guī)律,在實(shí)際課題中提煉出數(shù)學(xué)模型這一過(guò)程被稱(chēng)為數(shù)學(xué)建模。下面是學(xué)習(xí)啦小編為大家整理的數(shù)學(xué)建模教學(xué)優(yōu)秀論文,供大家參考。

  數(shù)學(xué)建模教學(xué)優(yōu)秀論文范文一:高中數(shù)學(xué)建模教學(xué)設(shè)想論文

  論文關(guān)鍵詞:數(shù)學(xué)建模數(shù)學(xué)應(yīng)用意識(shí)數(shù)學(xué)建模教學(xué)

  論文摘要:為增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),切實(shí)培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力,分析了高中數(shù)學(xué)建模的必要性,并通過(guò)對(duì)高中學(xué)生數(shù)學(xué)建模能力的調(diào)查分析,發(fā)現(xiàn)學(xué)生數(shù)學(xué)應(yīng)用及數(shù)學(xué)建模方面存在的問(wèn)題,并針對(duì)問(wèn)題提出了關(guān)于高中進(jìn)行數(shù)學(xué)建模教學(xué)的幾點(diǎn)意見(jiàn)。

  數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué),在它產(chǎn)生和發(fā)展的歷史長(zhǎng)河中,一直是和各種各樣的應(yīng)用問(wèn)題緊密相關(guān)的。數(shù)學(xué)的特點(diǎn)不僅在于概念的抽象性、邏輯的嚴(yán)密性,結(jié)論的明確性和體系的完整性,而且在于它應(yīng)用的廣泛性,自進(jìn)入21世紀(jì)的知識(shí)經(jīng)濟(jì)時(shí)代以來(lái),數(shù)學(xué)科學(xué)的地位發(fā)生了巨大的變化,它正在從國(guó)家經(jīng)濟(jì)和科技的后備走到了前沿。經(jīng)濟(jì)發(fā)展的全球化、計(jì)算機(jī)的迅猛發(fā)展,數(shù)學(xué)理論與方法的不斷擴(kuò)充使得數(shù)學(xué)已成為當(dāng)代高科技的一個(gè)重要組成部分,數(shù)學(xué)已成為一種能夠普遍實(shí)施的技術(shù)。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和能力也成為數(shù)學(xué)教學(xué)的一個(gè)重要方面。

  目前國(guó)際數(shù)學(xué)界普遍贊同通過(guò)開(kāi)展數(shù)學(xué)建?;顒?dòng)和在數(shù)學(xué)教學(xué)中推廣使用現(xiàn)代化技術(shù)來(lái)推動(dòng)數(shù)學(xué)教育改革。美國(guó)、德國(guó)、日本等發(fā)達(dá)國(guó)家普遍都十分重視數(shù)學(xué)建模教學(xué),把數(shù)學(xué)建模活動(dòng)從大學(xué)生向中學(xué)生轉(zhuǎn)移是近年國(guó)際數(shù)學(xué)教育發(fā)展的一種趨勢(shì)。“我國(guó)的數(shù)學(xué)教育在很長(zhǎng)一段時(shí)間內(nèi)對(duì)于數(shù)學(xué)與實(shí)際、數(shù)學(xué)與其它學(xué)科的聯(lián)系未能給予充分的重視,因此,高中數(shù)學(xué)在數(shù)學(xué)應(yīng)用和聯(lián)系實(shí)際方面需要大力加強(qiáng)。”我國(guó)普通高中新的數(shù)學(xué)教學(xué)大綱中也明確提出要切實(shí)培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力,要求增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí),能初步運(yùn)用數(shù)學(xué)模型解決實(shí)際問(wèn)題。這些要求不僅符合數(shù)學(xué)本身發(fā)展的需要,也是社會(huì)發(fā)展的需要。因此我們的數(shù)學(xué)教學(xué)不僅要使學(xué)生知道許多重要的數(shù)學(xué)概念、方法和結(jié)論,而且要提高學(xué)生的思維能力,培養(yǎng)學(xué)生自覺(jué)地運(yùn)用數(shù)學(xué)知識(shí)去處理和解決日常生活中所遇到的問(wèn)題,從而形成良好的思維品質(zhì)。而數(shù)學(xué)建模通過(guò)"從實(shí)際情境中抽象出數(shù)學(xué)問(wèn)題,求解數(shù)學(xué)模型,回到現(xiàn)實(shí)中進(jìn)行檢驗(yàn),必要時(shí)修改模型使之更切合實(shí)際"這一過(guò)程,促使學(xué)生圍繞實(shí)際問(wèn)題查閱資料、收集信息、整理加工、獲取新知識(shí),從而拓寬了學(xué)生的知識(shí)面和能力。數(shù)學(xué)建模將各種知識(shí)綜合應(yīng)用于解決實(shí)際問(wèn)題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力的必備手段之一,是改善學(xué)生學(xué)習(xí)方式的突破口。因此有計(jì)劃地開(kāi)展數(shù)學(xué)建?;顒?dòng),將有效地培養(yǎng)學(xué)生的能力,提高學(xué)生的綜合素質(zhì)。

  數(shù)學(xué)建??梢蕴岣邔W(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生不怕吃苦、敢于戰(zhàn)勝困難的堅(jiān)強(qiáng)意志,培養(yǎng)自律、團(tuán)結(jié)的優(yōu)秀品質(zhì),培養(yǎng)正確的數(shù)學(xué)觀。具體的調(diào)查表明,大部分學(xué)生對(duì)數(shù)學(xué)建模比較感興趣,并不同程度地促進(jìn)了他們對(duì)于數(shù)學(xué)及其他課程的學(xué)習(xí).有許多學(xué)生認(rèn)為:"數(shù)學(xué)源于生活,生活依靠數(shù)學(xué),平時(shí)做的題都是理論性較強(qiáng),實(shí)際性較弱的題,都是在理想化狀態(tài)下進(jìn)行討論,而數(shù)學(xué)建模問(wèn)題貼近生活,充滿(mǎn)趣味性";"數(shù)學(xué)建模使我更深切地感受到數(shù)學(xué)與實(shí)際的聯(lián)系,感受到數(shù)學(xué)問(wèn)題的廣泛,使我們對(duì)于學(xué)習(xí)數(shù)學(xué)的重要性理解得更為深刻"。數(shù)學(xué)建模能培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)進(jìn)行分析、推理、證明和計(jì)算的能力;用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)際問(wèn)題及用普通人能理解的語(yǔ)言表達(dá)數(shù)學(xué)結(jié)果的能力;應(yīng)用計(jì)算機(jī)及相應(yīng)數(shù)學(xué)軟件的能力;獨(dú)立查找文獻(xiàn),自學(xué)的能力,組織、協(xié)調(diào)、管理的能力;創(chuàng)造力、想象力、聯(lián)想力和洞察力。由此,在高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模知識(shí)是很有必要的。公務(wù)員之家

  那么當(dāng)前我國(guó)高中學(xué)生的數(shù)學(xué)建模意識(shí)和建模能力如何呢?下面是節(jié)自有關(guān)人士對(duì)某次競(jìng)賽中的一道建模題目學(xué)生的作答情況所作的抽樣調(diào)查。題目?jī)?nèi)容如下:

  某市教育局組織了一項(xiàng)競(jìng)賽,聘請(qǐng)了來(lái)自不同學(xué)校的數(shù)名教師做評(píng)委組成評(píng)判組。本次競(jìng)賽制定四條評(píng)分規(guī)則,內(nèi)容如下:

  (1)評(píng)委對(duì)本校選手不打分。

  (2)每位評(píng)委對(duì)每位參賽選手(除本校選手外)都必須打分,且所打分?jǐn)?shù)不相同。

  (3)評(píng)委打分方法為:倒數(shù)第一名記1分,倒數(shù)第二名記2分,依次類(lèi)推。

  (4)比賽結(jié)束后,求出各選手的平均分,按平均分從高到低排序,依此確定本次競(jìng)賽的名次,以平均分最高者為第一名,依次類(lèi)推。

  本次比賽中,選手甲所在學(xué)校有一名評(píng)委,這位評(píng)委將不參加對(duì)選手甲的評(píng)分,其他選手所在學(xué)校無(wú)人擔(dān)任評(píng)委。

  (Ⅰ)公布評(píng)分規(guī)則后,其他選手覺(jué)得這種評(píng)分規(guī)則對(duì)甲更有利,請(qǐng)問(wèn)這種看法是否有道理?(請(qǐng)說(shuō)明理由)

  (Ⅱ)能否給這次比賽制定更公平的評(píng)分規(guī)則?若能,請(qǐng)你給出一個(gè)更公平的評(píng)分規(guī)則,并說(shuō)明理由。

  本題是一道開(kāi)放性很強(qiáng)的好題,給學(xué)生留有很大的發(fā)揮空間,不少學(xué)生都有精彩的表現(xiàn),例如關(guān)于評(píng)分規(guī)則的修正,就有下列幾種方案:

  方案1:將選手甲所在學(xué)校評(píng)委的評(píng)分方法改為倒數(shù)第一名記1+

  分,倒數(shù)第二名記2+

  ,…依次類(lèi)推;(評(píng)分標(biāo)準(zhǔn)) 方案2:將選手甲所在學(xué)校評(píng)委的評(píng)分方法改為在原來(lái)的基礎(chǔ)上乘以

  ;

  方案3:對(duì)甲評(píng)分時(shí),用其他評(píng)委的平均分計(jì)做甲所在學(xué)校評(píng)委的打分;

  然而也有不少學(xué)生為空白,究其原因可能除了時(shí)間因素,學(xué)生對(duì)于較長(zhǎng)的文字表述產(chǎn)生畏懼心理、不能正確閱讀是重要因素。同時(shí),一些學(xué)生由于不能正確理解規(guī)則(3),得出選手甲的平均得分為

  ,其他選手的平均得分為

  ,從而得出錯(cuò)誤結(jié)論.不少學(xué)生出現(xiàn)“甲所在學(xué)校的評(píng)委會(huì)故意壓低其他選手的分?jǐn)?shù),因而對(duì)甲有利”的解釋?zhuān)鴽](méi)有意識(shí)到作出必要的假設(shè)是數(shù)學(xué)建模方法中的重要且必要的一環(huán)。有些學(xué)生在正確理解題意的基礎(chǔ)上,提出了“規(guī)則對(duì)甲有利”的理由,例如:排名在甲前的同學(xué)少得了1分;甲所在學(xué)校的評(píng)委不給其他選手最高分(n分),所以甲得最高分的概率比其他選手高;相當(dāng)于甲所在學(xué)校的評(píng)委把最高分給了甲;甲少拿一個(gè)分?jǐn)?shù),若少拿最低分,則有利;若少拿最高分,則不利;等等。以上各種想法都有道理,遺憾的是大部分學(xué)生僅僅停留在這些感性認(rèn)識(shí)和文字說(shuō)明上,沒(méi)能進(jìn)一步引進(jìn)數(shù)學(xué)模型和數(shù)學(xué)符號(hào)去進(jìn)行理性的分析。如何衡量規(guī)則的公平性是本題的關(guān)鍵,也是建模的原則。很少有學(xué)生能夠明確提出這個(gè)原則,有些學(xué)生在第2問(wèn)評(píng)分規(guī)則的修正中,提出“將甲所在學(xué)校的評(píng)委從評(píng)判組中剔除掉”,這種辦法違背實(shí)際的要求。有些學(xué)生被生活中一些現(xiàn)象誤導(dǎo),提出“去掉最高分和最低分”的評(píng)分規(guī)則修正方法,而不去從數(shù)學(xué)的角度分析和研究。

  通過(guò)對(duì)這道高中數(shù)學(xué)知識(shí)應(yīng)用競(jìng)賽題解答情況的分析,我們了解到學(xué)生數(shù)學(xué)建模意識(shí)和建模能力的現(xiàn)狀不容樂(lè)觀。學(xué)生在數(shù)學(xué)應(yīng)用能力上存在的一些問(wèn)題:(1)數(shù)學(xué)閱讀能力差,誤解題意。(2)數(shù)學(xué)建模方法需要提高。(3)數(shù)學(xué)應(yīng)用意識(shí)不盡人意數(shù)學(xué)建模意識(shí)很有待加強(qiáng)。新課程標(biāo)準(zhǔn)給數(shù)學(xué)建模提出了更高的要求,也為中學(xué)數(shù)學(xué)建模的發(fā)展提供了很好的契機(jī),相信隨著新課程的實(shí)施,我們高中生的數(shù)學(xué)建模意識(shí)和建模能力會(huì)有大的提高!

  那么高中的數(shù)學(xué)建模教學(xué)應(yīng)如何進(jìn)行呢?數(shù)學(xué)建模的教學(xué)本身是一個(gè)不斷探索、不斷創(chuàng)新、不斷完善和提高的過(guò)程。不同于傳統(tǒng)的教學(xué)模式,數(shù)學(xué)建模課程指導(dǎo)思想是:以實(shí)驗(yàn)室為基礎(chǔ)、以學(xué)生為中心、以問(wèn)題為主線(xiàn)、以培養(yǎng)能力為目標(biāo)來(lái)組織教學(xué)工作。通過(guò)教學(xué)使學(xué)生了解利用數(shù)學(xué)理論和方法去分折和解決問(wèn)題的全過(guò)程,提高他們分折問(wèn)題和解決問(wèn)題的能力;提高他們學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用數(shù)學(xué)的意識(shí)與能力。數(shù)學(xué)建模以學(xué)生為主,教師利用一些事先設(shè)計(jì)好的問(wèn)題,引導(dǎo)學(xué)生主動(dòng)查閱文獻(xiàn)資料和學(xué)習(xí)新知識(shí),鼓勵(lì)學(xué)生積極開(kāi)展討論和辯論,主動(dòng)探索解決之法。教學(xué)過(guò)程的重點(diǎn)是創(chuàng)造一個(gè)環(huán)境去誘導(dǎo)學(xué)生的學(xué)習(xí)欲望、培養(yǎng)他們的自學(xué)能力,增強(qiáng)他們的數(shù)學(xué)素質(zhì)和創(chuàng)新能力,強(qiáng)調(diào)的是獲取新知識(shí)的能力,是解決問(wèn)題的過(guò)程,而不是知識(shí)與結(jié)果。

  (一)在教學(xué)中傳授學(xué)生初步的數(shù)學(xué)建模知識(shí)。

  中學(xué)數(shù)學(xué)建模的目的旨在培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),掌握數(shù)學(xué)建模的方法,為將來(lái)的學(xué)習(xí)、工作打下堅(jiān)實(shí)的基礎(chǔ)。在教學(xué)時(shí)將數(shù)學(xué)建模中最基本的過(guò)程教給學(xué)生:利用現(xiàn)行的數(shù)學(xué)教材,向?qū)W生介紹一些常用的、典型的數(shù)學(xué)模型。如函數(shù)模型、不等式模型、數(shù)列模型、幾何模型、三角模型、方程模型等。教師應(yīng)研究在各個(gè)教學(xué)章節(jié)中可引入哪些數(shù)學(xué)基本模型問(wèn)題,如儲(chǔ)蓄問(wèn)題、信用貸款問(wèn)題可結(jié)合在數(shù)列教學(xué)中。教師可以通過(guò)教材中一些不大復(fù)雜的應(yīng)用問(wèn)題,帶著學(xué)生一起來(lái)完成數(shù)學(xué)化的過(guò)程,給學(xué)生一些數(shù)學(xué)應(yīng)用和數(shù)學(xué)建模的初步體驗(yàn)。

  例如在學(xué)習(xí)了二次函數(shù)的最值問(wèn)題后,通過(guò)下面的應(yīng)用題讓學(xué)生懂得如何用數(shù)學(xué)建模的方法來(lái)解決實(shí)際問(wèn)題。例:客房的定價(jià)問(wèn)題。一個(gè)星級(jí)旅館有150個(gè)客房,經(jīng)過(guò)一段時(shí)間的經(jīng)營(yíng)實(shí)踐,旅館經(jīng)理得到了一些數(shù)據(jù):每間客房定價(jià)為160元時(shí),住房率為55%,每間客房定價(jià)為140元時(shí),住房率為65%,

  每間客房定價(jià)為120元時(shí),住房率為75%,每間客房定價(jià)為100元時(shí),住房率為85%。欲使旅館每天收入最高,每間客房應(yīng)如何定價(jià)?

  [簡(jiǎn)化假設(shè)]

  (1)每間客房最高定價(jià)為160元;

  (2)設(shè)隨著房?jī)r(jià)的下降,住房率呈線(xiàn)性增長(zhǎng);

  (3)設(shè)旅館每間客房定價(jià)相等。

  [建立模型]

  設(shè)y表示旅館一天的總收入,與160元相比每間客房降低的房?jī)r(jià)為x元。由假設(shè)(2)可得,每降價(jià)1元,住房率就增加。因此由可知于是問(wèn)題轉(zhuǎn)化為:當(dāng)時(shí),y的最大值是多少?

  [求解模型]

  利用二次函數(shù)求最值可得到當(dāng)x=25即住房定價(jià)為135元時(shí),y取最大值13668.75(元),

  [討論與驗(yàn)證]

  (1)容易驗(yàn)證此收入在各種已知定價(jià)對(duì)應(yīng)的收入中是最大的。如果為了便于管理,定價(jià)為140元也是可以的,因?yàn)榇藭r(shí)它與最高收入只差18.75元。

  (2)如果定價(jià)為180元,住房率應(yīng)為45%,相應(yīng)的收入只有12150元,因此假設(shè)(1)是合理的。

  (二)培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),增強(qiáng)數(shù)學(xué)建模意識(shí)。

  首先,學(xué)生的應(yīng)用意識(shí)體現(xiàn)在以下兩個(gè)方面:一是面對(duì)實(shí)際問(wèn)題,能主動(dòng)嘗試從數(shù)學(xué)的角度運(yùn)用所學(xué)知識(shí)和方法尋求解決問(wèn)題的策略,學(xué)習(xí)者在學(xué)習(xí)的過(guò)程中能夠認(rèn)識(shí)到數(shù)學(xué)是有用的。二是認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)含著大量的數(shù)學(xué)信息,數(shù)學(xué)在現(xiàn)實(shí)世界中有著廣泛的應(yīng)用:生活中處處有數(shù)學(xué),數(shù)學(xué)就在他的身邊。其次,關(guān)于如何培養(yǎng)學(xué)生的應(yīng)用意識(shí):在數(shù)學(xué)教學(xué)和對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)的指導(dǎo)中,介紹知識(shí)的來(lái)龍去脈時(shí)多與實(shí)際生活相聯(lián)系。例如,日常生活中存在著“不同形式的等量關(guān)系和不等量關(guān)系”以及“變量間的函數(shù)對(duì)應(yīng)關(guān)系”、“變相間的非確切的相關(guān)關(guān)系”、“事物發(fā)生的可預(yù)測(cè)性,可能性大小”等,這些正是數(shù)學(xué)中引入“方程”、“不等式”、“函數(shù)”“變量間的線(xiàn)性相關(guān)”、“概率”的實(shí)際背景。另外鍛煉學(xué)生學(xué)會(huì)運(yùn)用數(shù)學(xué)語(yǔ)言描述周?chē)澜绯霈F(xiàn)的數(shù)學(xué)現(xiàn)象。數(shù)學(xué)是一種“世界通用語(yǔ)言”它能夠準(zhǔn)確、清楚、間接地刻畫(huà)和描述日常生活中的許多現(xiàn)象。應(yīng)讓學(xué)生養(yǎng)成運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的習(xí)慣。例如,當(dāng)學(xué)生乘坐出租車(chē)時(shí),他應(yīng)能意識(shí)到付費(fèi)與行駛時(shí)間或路程之間具有一定的函數(shù)關(guān)系。鼓勵(lì)學(xué)生運(yùn)用數(shù)學(xué)建模解決實(shí)際問(wèn)題。首先通過(guò)觀察分析、提煉出實(shí)際問(wèn)題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識(shí)系統(tǒng)去處理,當(dāng)然這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類(lèi)比能力。學(xué)生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學(xué)建模意識(shí)貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點(diǎn)去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問(wèn)題中抽象出我們熟悉的數(shù)學(xué)模型,進(jìn)而達(dá)到用數(shù)學(xué)模型來(lái)解決實(shí)際問(wèn)題,使數(shù)學(xué)建模意識(shí)成為學(xué)生思考問(wèn)題的方法和習(xí)慣。通過(guò)教師的潛移默化,經(jīng)常滲透數(shù)學(xué)建模意識(shí),學(xué)生可以從各類(lèi)大量的建模問(wèn)題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行建模的能力。

  (三)在教學(xué)中注意聯(lián)系相關(guān)學(xué)科加以運(yùn)用

  在數(shù)學(xué)建模教學(xué)中應(yīng)該重視選用數(shù)學(xué)與物理、化學(xué)、生物、美學(xué)等知識(shí)相結(jié)合的跨學(xué)科問(wèn)題和大量與日常生活相聯(lián)系(如投資買(mǎi)賣(mài)、銀行儲(chǔ)蓄、測(cè)量、乘車(chē)、運(yùn)動(dòng)等方面)的數(shù)學(xué)問(wèn)題,從其它學(xué)科中選擇應(yīng)用題,通過(guò)構(gòu)建模型,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)工具解決該學(xué)科難題的能力。例如,高中生物學(xué)科以描述性的語(yǔ)言為主,有的學(xué)生往往以為學(xué)好生物學(xué)是與數(shù)學(xué)沒(méi)有關(guān)系的。他們尚未樹(shù)立理科意識(shí),缺乏理科思維。比如:他們不會(huì)用數(shù)學(xué)上的排列與組合來(lái)分析減數(shù)分裂過(guò)程配子的基因組成;也不會(huì)用數(shù)學(xué)上的概率的相加、相乘原理來(lái)解決一些遺傳病機(jī)率的計(jì)算等等。這些需要教師在平時(shí)相應(yīng)的課堂內(nèi)容教學(xué)中引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模。因此我們?cè)诮虒W(xué)中應(yīng)注意與其它學(xué)科的呼應(yīng),這不但可以幫助學(xué)生加深對(duì)其它學(xué)科的理解,也是培養(yǎng)學(xué)生建模意識(shí)的一個(gè)不可忽視的途徑。又例如教了正弦函數(shù)后,可引導(dǎo)學(xué)生用模型函數(shù)寫(xiě)出物理中振動(dòng)圖象或交流圖象的數(shù)學(xué)表達(dá)式。

  最后,為了培養(yǎng)學(xué)生的建模意識(shí),中學(xué)數(shù)學(xué)教師應(yīng)首先需要提高自己的建模意識(shí)。中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動(dòng)態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)生活。中學(xué)教師只有通過(guò)對(duì)數(shù)學(xué)建模的系統(tǒng)學(xué)習(xí)和研究,才能準(zhǔn)確地的把握數(shù)學(xué)建模問(wèn)題的深度和難度,更好地推動(dòng)中學(xué)數(shù)學(xué)建模教學(xué)的發(fā)展。

  參考文獻(xiàn):

  1.《問(wèn)題解決的數(shù)學(xué)模型方法》北京師范大學(xué)出版社,1999.8

  2.普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)),人民教育出版社,2003.4

  3.《數(shù)學(xué)建模基礎(chǔ)》清華大學(xué)出版社,2004.6

  4.《初等數(shù)學(xué)建模》四川大學(xué)出版社。2004.12

  數(shù)學(xué)建模教學(xué)優(yōu)秀論文范文二:數(shù)學(xué)建模教學(xué)論文

  數(shù)學(xué)建模可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生不怕吃苦、敢于戰(zhàn)勝困難的堅(jiān)強(qiáng)意志,培養(yǎng)自律、團(tuán)結(jié)的優(yōu)秀品質(zhì),培養(yǎng)正確的數(shù)學(xué)觀。具體的調(diào)查表明,大部分學(xué)生對(duì)數(shù)學(xué)建模比較感興趣,并不同程度地促進(jìn)了他們對(duì)于數(shù)學(xué)及其他課程的學(xué)習(xí).有許多學(xué)生認(rèn)為:"數(shù)學(xué)源于生活,生活依靠數(shù)學(xué),平時(shí)做的題都是理論性較強(qiáng),實(shí)際性較弱的題,都是在理想化狀態(tài)下進(jìn)行討論,而數(shù)學(xué)建模問(wèn)題貼近生活,充滿(mǎn)趣味性";"數(shù)學(xué)建模使我更深切地感受到數(shù)學(xué)與實(shí)際的聯(lián)系,感受到數(shù)學(xué)問(wèn)題的廣泛,使我們對(duì)于學(xué)習(xí)數(shù)學(xué)的重要性理解得更為深刻"。數(shù)學(xué)建模能培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)進(jìn)行分析、推理、證明和計(jì)算的能力;用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)際問(wèn)題及用普通人能理解的語(yǔ)言表達(dá)數(shù)學(xué)結(jié)果的能力;應(yīng)用計(jì)算機(jī)及相應(yīng)數(shù)學(xué)軟件的能力;獨(dú)立查找文獻(xiàn),自學(xué)的能力,組織、協(xié)調(diào)、管理的能力;創(chuàng)造力、想象力、聯(lián)想力和洞察力。由此,在高中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模知識(shí)是很有必要的。

  那么當(dāng)前我國(guó)高中學(xué)生的數(shù)學(xué)建模意識(shí)和建模能力如何呢?下面是節(jié)自有關(guān)人士對(duì)某次競(jìng)賽中的一道建模題目學(xué)生的作答情況所作的抽樣調(diào)查。題目?jī)?nèi)容如下:

  某市教育局組織了一項(xiàng)競(jìng)賽,聘請(qǐng)了來(lái)自不同學(xué)校的數(shù)名教師做評(píng)委組成評(píng)判組。本次競(jìng)賽制定四條評(píng)分規(guī)則,內(nèi)容如下:

  (1)評(píng)委對(duì)本校選手不打分。

  (2)每位評(píng)委對(duì)每位參賽選手(除本校選手外)都必須打分,且所打分?jǐn)?shù)不相同。

  (3)評(píng)委打分方法為:倒數(shù)第一名記1分,倒數(shù)第二名記2分,依次類(lèi)推。

  (4)比賽結(jié)束后,求出各選手的平均分,按平均分從高到低排序,依此確定本次競(jìng)賽的名次,以平均分最高者為第一名,依次類(lèi)推。

  本次比賽中,選手甲所在學(xué)校有一名評(píng)委,這位評(píng)委將不參加對(duì)選手甲的評(píng)分,其他選手所在學(xué)校無(wú)人擔(dān)任評(píng)委。

  (Ⅰ)公布評(píng)分規(guī)則后,其他選手覺(jué)得這種評(píng)分規(guī)則對(duì)甲更有利,請(qǐng)問(wèn)這種看法是否有道理?(請(qǐng)說(shuō)明理由)

  (Ⅱ)能否給這次比賽制定更公平的評(píng)分規(guī)則?若能,請(qǐng)你給出一個(gè)更公平的評(píng)分規(guī)則,并說(shuō)明理由。

  本題是一道開(kāi)放性很強(qiáng)的好題,給學(xué)生留有很大的發(fā)揮空間,不少學(xué)生都有精彩的表現(xiàn),例如關(guān)于評(píng)分規(guī)則的修正,就有下列幾種方案:

  方案1:將選手甲所在學(xué)校評(píng)委的評(píng)分方法改為倒數(shù)第一名記1+分,倒數(shù)第二名記2+,…依次類(lèi)推;(評(píng)分標(biāo)準(zhǔn))

  方案2:將選手甲所在學(xué)校評(píng)委的評(píng)分方法改為在原來(lái)的基礎(chǔ)上乘以;

  方案3:對(duì)甲評(píng)分時(shí),用其他評(píng)委的平均分計(jì)做甲所在學(xué)校評(píng)委的打分;

  然而也有不少學(xué)生為空白,究其原因可能除了時(shí)間因素,學(xué)生對(duì)于較長(zhǎng)的文字表述產(chǎn)生畏懼心理、不能正確閱讀是重要因素。同時(shí),一些學(xué)生由于不能正確理解規(guī)則(3),得出選手甲的平均得分為,其他選手的平均得分為,從而得出錯(cuò)誤結(jié)論.不少學(xué)生出現(xiàn)“甲所在學(xué)校的評(píng)委會(huì)故意壓低其他選手的分?jǐn)?shù),因而對(duì)甲有利”的解釋?zhuān)鴽](méi)有意識(shí)到作出必要的假設(shè)是數(shù)學(xué)建模方法中的重要且必要的一環(huán)。有些學(xué)生在正確理解題意的基礎(chǔ)上,提出了“規(guī)則對(duì)甲有利”的理由,例如:排名在甲前的同學(xué)少得了1分;甲所在學(xué)校的評(píng)委不給其他選手最高分(n分),所以甲得最高分的概率比其他選手高;相當(dāng)于甲所在學(xué)校的評(píng)委把最高分給了甲;甲少拿一個(gè)分?jǐn)?shù),若少拿最低分,則有利;若少拿最高分,則不利;等等。以上各種想法都有道理,遺憾的是大部分學(xué)生僅僅停留在這些感性認(rèn)識(shí)和文字說(shuō)明上,沒(méi)能進(jìn)一步引進(jìn)數(shù)學(xué)模型和數(shù)學(xué)符號(hào)去進(jìn)行理性的分析。如何衡量規(guī)則的公平性是本題的關(guān)鍵,也是建模的原則。很少有學(xué)生能夠明確提出這個(gè)原則,有些學(xué)生在第2問(wèn)評(píng)分規(guī)則的修正中,提出“將甲所在學(xué)校的評(píng)委從評(píng)判組中剔除掉”,這種辦法違背實(shí)際的要求。有些學(xué)生被生活中一些現(xiàn)象誤導(dǎo),提出“去掉最高分和最低分”的評(píng)分規(guī)則修正方法,而不去從數(shù)學(xué)的角度分析和研究。

  通過(guò)對(duì)這道高中數(shù)學(xué)知識(shí)應(yīng)用競(jìng)賽題解答情況的分析,我們了解到學(xué)生數(shù)學(xué)建模意識(shí)和建模能力的現(xiàn)狀不容樂(lè)觀。學(xué)生在數(shù)學(xué)應(yīng)用能力上存在的一些問(wèn)題:(1)數(shù)學(xué)閱讀能力差,誤解題意。(2)數(shù)學(xué)建模方法需要提高。(3)數(shù)學(xué)應(yīng)用意識(shí)不盡人意數(shù)學(xué)建模意識(shí)很有待加強(qiáng)。新課程標(biāo)準(zhǔn)給數(shù)學(xué)建模提出了更高的要求,也為中學(xué)數(shù)學(xué)建模的發(fā)展提供了很好的契機(jī),相信隨著新課程的實(shí)施,我們高中生的數(shù)學(xué)建模意識(shí)和建模能力會(huì)有大的提高!

  那么高中的數(shù)學(xué)建模教學(xué)應(yīng)如何進(jìn)行呢?數(shù)學(xué)建模的教學(xué)本身是一個(gè)不斷探索、不斷創(chuàng)新、不斷完善和提高的過(guò)程。不同于傳統(tǒng)的教學(xué)模式,數(shù)學(xué)建模課程指導(dǎo)思想是:以實(shí)驗(yàn)室為基礎(chǔ)、以學(xué)生為中心、以問(wèn)題為主線(xiàn)、以培養(yǎng)能力為目標(biāo)來(lái)組織教學(xué)工作。通過(guò)教學(xué)使學(xué)生了解利用數(shù)學(xué)理論和方法去分折和解決問(wèn)題的全過(guò)程,提高他們分折問(wèn)題和解決問(wèn)題的能力;提高他們學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用數(shù)學(xué)的意識(shí)與能力。數(shù)學(xué)建模以學(xué)生為主,教師利用一些事先設(shè)計(jì)好的問(wèn)題,引導(dǎo)學(xué)生主動(dòng)查閱文獻(xiàn)資料和學(xué)習(xí)新知識(shí),鼓勵(lì)學(xué)生積極開(kāi)展討論和辯論,主動(dòng)探索解決之法。教學(xué)過(guò)程的重點(diǎn)是創(chuàng)造一個(gè)環(huán)境去誘導(dǎo)學(xué)生的學(xué)習(xí)欲望、培養(yǎng)他們的自學(xué)能力,增強(qiáng)他們的數(shù)學(xué)素質(zhì)和創(chuàng)新能力,強(qiáng)調(diào)的是獲取新知識(shí)的能力,是解決問(wèn)題的過(guò)程,而不是知識(shí)與結(jié)果。

  (一)在教學(xué)中傳授學(xué)生初步的數(shù)學(xué)建模知識(shí)。

  中學(xué)數(shù)學(xué)建模的目的旨在培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),掌握數(shù)學(xué)建模的方法,為將來(lái)的學(xué)習(xí)、工作打下堅(jiān)實(shí)的基礎(chǔ)。在教學(xué)時(shí)將數(shù)學(xué)建模中最基本的過(guò)程教給學(xué)生:利用現(xiàn)行的數(shù)學(xué)教材,向?qū)W生介紹一些常用的、典型的數(shù)學(xué)模型。如函數(shù)模型、不等式模型、數(shù)列模型、幾何模型、三角模型、方程模型等。教師應(yīng)研究在各個(gè)教學(xué)章節(jié)中可引入哪些數(shù)學(xué)基本模型問(wèn)題,如儲(chǔ)蓄問(wèn)題、信用貸款問(wèn)題可結(jié)合在數(shù)列教學(xué)中。教師可以通過(guò)教材中一些不大復(fù)雜的應(yīng)用問(wèn)題,帶著學(xué)生一起來(lái)完成數(shù)學(xué)化的過(guò)程,給學(xué)生一些數(shù)學(xué)應(yīng)用和數(shù)學(xué)建模的初步體驗(yàn)。

  例如在學(xué)習(xí)了二次函數(shù)的最值問(wèn)題后,通過(guò)下面的應(yīng)用題讓學(xué)生懂得如何用數(shù)學(xué)建模的方法來(lái)解決實(shí)際問(wèn)題。例:客房的定價(jià)問(wèn)題。一個(gè)星級(jí)旅館有150個(gè)客房,經(jīng)過(guò)一段時(shí)間的經(jīng)營(yíng)實(shí)踐,旅館經(jīng)理得到了一些數(shù)據(jù):每間客房定價(jià)為160元時(shí),住房率為55%,每間客房定價(jià)為140元時(shí),住房率為65%,

  每間客房定價(jià)為120元時(shí),住房率為75%,每間客房定價(jià)為100元時(shí),住房率為85%。欲使旅館每天收入最高,每間客房應(yīng)如何定價(jià)?

  [簡(jiǎn)化假設(shè)]

  (1)每間客房最高定價(jià)為160元;

  (2)設(shè)隨著房?jī)r(jià)的下降,住房率呈線(xiàn)性增長(zhǎng);

  (3)設(shè)旅館每間客房定價(jià)相等。

  [建立模型]

  設(shè)y表示旅館一天的總收入,與160元相比每間客房降低的房?jī)r(jià)為x元。由假設(shè)(2)可得,每降價(jià)1元,住房率就增加。因此

  由可知

  于是問(wèn)題轉(zhuǎn)化為:當(dāng)時(shí),y的最大值是多少?

  [求解模型]

  利用二次函數(shù)求最值可得到當(dāng)x=25即住房定價(jià)為135元時(shí),y取最大值13668.75(元),

  [討論與驗(yàn)證]

  (1)容易驗(yàn)證此收入在各種已知定價(jià)對(duì)應(yīng)的收入中是最大的。如果為了便于管理,定價(jià)為140元也是可以的,因?yàn)榇藭r(shí)它與最高收入只差18.75元。

  (2)如果定價(jià)為180元,住房率應(yīng)為45%,相應(yīng)的收入只有12150元,因此假設(shè)(1)是合理的。

  (二)培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),增強(qiáng)數(shù)學(xué)建模意識(shí)。

  首先,學(xué)生的應(yīng)用意識(shí)體現(xiàn)在以下兩個(gè)方面:一是面對(duì)實(shí)際問(wèn)題,能主動(dòng)嘗試從數(shù)學(xué)的角度運(yùn)用所學(xué)知識(shí)和方法尋求解決問(wèn)題的策略,學(xué)習(xí)者在學(xué)習(xí)的過(guò)程中能夠認(rèn)識(shí)到數(shù)學(xué)是有用的。二是認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)含著大量的數(shù)學(xué)信息,數(shù)學(xué)在現(xiàn)實(shí)世界中有著廣泛的應(yīng)用:生活中處處有數(shù)學(xué),數(shù)學(xué)就在他的身邊。其次,關(guān)于如何培養(yǎng)學(xué)生的應(yīng)用意識(shí):在數(shù)學(xué)教學(xué)和對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)的指導(dǎo)中,介紹知識(shí)的來(lái)龍去脈時(shí)多與實(shí)際生活相聯(lián)系。例如,日常生活中存在著“不同形式的等量關(guān)系和不等量關(guān)系”以及“變量間的函數(shù)對(duì)應(yīng)關(guān)系”、“變相間的非確切的相關(guān)關(guān)系”、“事物發(fā)生的可預(yù)測(cè)性,可能性大小”等,這些正是數(shù)學(xué)中引入“方程”、“不等式”、“函數(shù)”“變量間的線(xiàn)性相關(guān)”、“概率”的實(shí)際背景。另外鍛煉學(xué)生學(xué)會(huì)運(yùn)用數(shù)學(xué)語(yǔ)言描述周?chē)澜绯霈F(xiàn)的數(shù)學(xué)現(xiàn)象。數(shù)學(xué)是一種“世界通用語(yǔ)言”它能夠準(zhǔn)確、清楚、間接地刻畫(huà)和描述日常生活中的許多現(xiàn)象。應(yīng)讓學(xué)生養(yǎng)成運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的習(xí)慣。例如,當(dāng)學(xué)生乘坐出租車(chē)時(shí),他應(yīng)能意識(shí)到付費(fèi)與行駛時(shí)間或路程之間具有一定的函數(shù)關(guān)系。鼓勵(lì)學(xué)生運(yùn)用數(shù)學(xué)建模解決實(shí)際問(wèn)題。首先通過(guò)觀察分析、提煉出實(shí)際問(wèn)題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識(shí)系統(tǒng)去處理,當(dāng)然這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類(lèi)比能力。學(xué)生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學(xué)建模意識(shí)貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點(diǎn)去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問(wèn)題中抽象出我們熟悉的數(shù)學(xué)模型,進(jìn)而達(dá)到用數(shù)學(xué)模型來(lái)解決實(shí)際問(wèn)題,使數(shù)學(xué)建模意識(shí)成為學(xué)生思考問(wèn)題的方法和習(xí)慣。通過(guò)教師的潛移默化,經(jīng)常滲透數(shù)學(xué)建模意識(shí),學(xué)生可以從各類(lèi)大量的建模問(wèn)題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行建模的能力。

  (三)在教學(xué)中注意聯(lián)系相關(guān)學(xué)科加以運(yùn)用

  在數(shù)學(xué)建模教學(xué)中應(yīng)該重視選用數(shù)學(xué)與物理、化學(xué)、生物、美學(xué)等知識(shí)相結(jié)合的跨學(xué)科問(wèn)題和大量與日常生活相聯(lián)系(如投資買(mǎi)賣(mài)、銀行儲(chǔ)蓄、測(cè)量、乘車(chē)、運(yùn)動(dòng)等方面)的數(shù)學(xué)問(wèn)題,從其它學(xué)科中選擇應(yīng)用題,通過(guò)構(gòu)建模型,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)工具解決該學(xué)科難題的能力。例如,高中生物學(xué)科以描述性的語(yǔ)言為主,有的學(xué)生往往以為學(xué)好生物學(xué)是與數(shù)學(xué)沒(méi)有關(guān)系的。他們尚未樹(shù)立理科意識(shí),缺乏理科思維。比如:他們不會(huì)用數(shù)學(xué)上的排列與組合來(lái)分析減數(shù)分裂過(guò)程配子的基因組成;也不會(huì)用數(shù)學(xué)上的概率的相加、相乘原理來(lái)解決一些遺傳病機(jī)率的計(jì)算等等。這些需要教師在平時(shí)相應(yīng)的課堂內(nèi)容教學(xué)中引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)建模。因此我們?cè)诮虒W(xué)中應(yīng)注意與其它學(xué)科的呼應(yīng),這不但可以幫助學(xué)生加深對(duì)其它學(xué)科的理解,也是培養(yǎng)學(xué)生建模意識(shí)的一個(gè)不可忽視的途徑。又例如教了正弦函數(shù)后,可引導(dǎo)學(xué)生用模型函數(shù)寫(xiě)出物理中振動(dòng)圖象或交流圖象的數(shù)學(xué)表達(dá)式。

  最后,為了培養(yǎng)學(xué)生的建模意識(shí),中學(xué)數(shù)學(xué)教師應(yīng)首先需要提高自己的建模意識(shí)。中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動(dòng)態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)生活。中學(xué)教師只有通過(guò)對(duì)數(shù)學(xué)建模的系統(tǒng)學(xué)習(xí)和研究,才能準(zhǔn)確地的把握數(shù)學(xué)建模問(wèn)題的深度和難度,更好地推動(dòng)中學(xué)數(shù)學(xué)建模教學(xué)的發(fā)展。

  論文關(guān)鍵詞:數(shù)學(xué)建模數(shù)學(xué)應(yīng)用意識(shí)數(shù)學(xué)建模教學(xué)

  論文摘要:為增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),切實(shí)培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力,分析了高中數(shù)學(xué)建模的必要性,并通過(guò)對(duì)高中學(xué)生數(shù)學(xué)建模能力的調(diào)查分析,發(fā)現(xiàn)學(xué)生數(shù)學(xué)應(yīng)用及數(shù)學(xué)建模方面存在的問(wèn)題,并針對(duì)問(wèn)題提出了關(guān)于高中進(jìn)行數(shù)學(xué)建模教學(xué)的幾點(diǎn)意見(jiàn)。

  參考文獻(xiàn):

  1.《問(wèn)題解決的數(shù)學(xué)模型方法》北京師范大學(xué)出版社,1999.8

  2.普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)),人民教育出版社,2003.4

  3.《數(shù)學(xué)建?;A(chǔ)》清華大學(xué)出版社,2004.6

  4.《初等數(shù)學(xué)建?!匪拇ù髮W(xué)出版社。2004.12

數(shù)學(xué)建模教學(xué)優(yōu)秀論文相關(guān)文章

1.數(shù)學(xué)建模優(yōu)秀論文

2.數(shù)學(xué)建模優(yōu)秀論文范文

3.大學(xué)數(shù)學(xué)建模論文范文

4.大學(xué)數(shù)學(xué)建模論文

5.小學(xué)生數(shù)學(xué)教學(xué)優(yōu)秀論文

數(shù)學(xué)建模教學(xué)優(yōu)秀論文

數(shù)學(xué)建模是指人們?cè)趯?duì)實(shí)際問(wèn)題的研究中,用數(shù)學(xué)語(yǔ)言和符號(hào)表達(dá)出其中所含的內(nèi)在規(guī)律,在實(shí)際課題中提煉出數(shù)學(xué)模型這一過(guò)程被稱(chēng)為數(shù)學(xué)建模。下面是學(xué)習(xí)啦小編為大家整理的數(shù)學(xué)建模教學(xué)優(yōu)秀論文,供大家參考。 數(shù)學(xué)建模教學(xué)優(yōu)秀論文范文一:
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
1366336