談設(shè)疑法在課堂教學(xué)中的應(yīng)用
時(shí)間:
姬源清1由 分享
俗話說(shuō),有疑則有思,無(wú)疑則無(wú)思,“疑”乃學(xué)問(wèn)之始,創(chuàng)新之本,而疑就是問(wèn)題.問(wèn)題是人思維的產(chǎn)物,也是人思維的原動(dòng)力.創(chuàng)設(shè)問(wèn)題情境是激起學(xué)生質(zhì)疑的有效且常用的方法,創(chuàng)設(shè)內(nèi)容產(chǎn)生疑問(wèn),出現(xiàn)思維的不和諧狀態(tài),喚起學(xué)生探究性學(xué)習(xí)的動(dòng)機(jī).在數(shù)學(xué)教學(xué)中,教師根據(jù)課堂情況、學(xué)生的心理狀態(tài)和教學(xué)內(nèi)容的不同,適時(shí)地提出經(jīng)過(guò)精心設(shè)計(jì)、目的明確的問(wèn)題,這對(duì)啟發(fā)學(xué)生的積極思維和學(xué)好數(shù)學(xué)有很大的作用.
一、教學(xué)要從矛盾開(kāi)始
教學(xué)從矛盾開(kāi)始就是從問(wèn)題開(kāi)始.思維自疑問(wèn)和驚奇開(kāi)始,在教學(xué)中可設(shè)計(jì)一個(gè)學(xué)生不易回答的懸念或者一個(gè)有趣的故事,激發(fā)學(xué)生強(qiáng)烈的求知欲望,起到啟示誘導(dǎo)的作用.如在教授等差數(shù)列求和公式時(shí),有位教師先講了一個(gè)數(shù)學(xué)小故事:德國(guó)的“數(shù)學(xué)王子”高斯,在小學(xué)讀書(shū)時(shí),老師出了一道算術(shù)題:1+2+3+……+100=?,老師剛讀完題目,高斯就在他的小黑板上寫(xiě)出了答案:5050,其他同學(xué)還在一個(gè)數(shù)一個(gè)數(shù)的挨個(gè)相加呢.那么,高斯是用什么方法做得這么快呢?這時(shí)學(xué)生出現(xiàn)驚疑,產(chǎn)生一種強(qiáng)烈的探究反響.這就是今天要講的等差數(shù)列的求和方法--倒序相加法…….
二、設(shè)疑于重點(diǎn)和難點(diǎn)
教材中有些內(nèi)容是枯燥乏味,艱澀難懂的.如數(shù)列的極限概念及無(wú)窮等比數(shù)列各項(xiàng)和的概念比較抽象,是難點(diǎn).如對(duì)于=1這一等式,有些同學(xué)學(xué)完了數(shù)列的極限這一節(jié)后仍表懷疑.為此,一位教師在教學(xué)中插入了一段“關(guān)于分牛傳說(shuō)的析疑”的故事:傳說(shuō)古代印度有一位老人,臨終前留下遺囑,要把19頭牛分給三個(gè)兒子.老大分總數(shù)的1/2,老二分總數(shù)的1/4,老三分總數(shù)的1/5.按印度的教規(guī),牛被視為神靈,不能宰殺,只能整頭分,先人的遺囑更必須無(wú)條件遵從.老人死后,三兄弟為分牛一事而絞盡腦汁,卻計(jì)無(wú)所出,最后決定訴諸官府.官府一籌莫展,便以“清官難斷家務(wù)事”為由,一推了之.鄰村智叟知道了,說(shuō):“這好辦!我有一頭牛借給你們.這樣,總共就有20頭牛.老大分1/2可得10頭;老二分1/4可得5頭;老三分1/5可得4頭.你等三人共分去19頭牛,剩下的一頭牛再還我!”真是妙極了!不過(guò),后來(lái)人們?cè)跉J佩之余總帶有一絲懷疑.老大似乎只該分9.5頭,最后他怎么竟得了10頭呢?學(xué)生很感興趣,……老師經(jīng)過(guò)分析使問(wèn)題轉(zhuǎn)化為學(xué)生所學(xué)的無(wú)窮等比 數(shù)列各項(xiàng)和公式(|q|<1)的應(yīng)用.寓解疑于趣味之中.
三、設(shè)疑于教材易出錯(cuò)之處
英國(guó)心理學(xué)家貝恩布里奇說(shuō)過(guò):“差錯(cuò)人皆有之,作為教師不利用是不能原諒的.”學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中最常見(jiàn)的錯(cuò)誤是,不顧條件或研究范圍的變化,丟三掉四,或解完一道題后不檢查、不思考.故在學(xué)生易出錯(cuò)之處,讓學(xué)生去嘗試,去“碰壁”和“跌跤”,讓學(xué)生充分“暴露問(wèn)題”,然后順其錯(cuò)誤認(rèn)真剖析,不斷引導(dǎo),使學(xué)生恍然大悟,留下深刻印象. 如:若函數(shù)圖象都在X軸上方,求實(shí)數(shù)a的取值范圍. 學(xué)生因思維定勢(shì)的影響,往往錯(cuò)解為a>0且,得出0<a <1,而忽略了a=0的情況.
四、設(shè)疑于結(jié)尾
一堂好課也應(yīng)設(shè)“矛盾”而終,使其完而未完,意味無(wú)窮.課堂何嘗不是如此,一堂好課不是講完了就完了,而是詞已盡意無(wú)窮.
如在解不等式時(shí),一位教師先利用學(xué)生已有的知識(shí)解決這個(gè)問(wèn)題,即采用解兩個(gè)不等式組來(lái)解決,接著,又用如下的解法:
原不等式可化為:即,所以原不等式解集為:,學(xué)生會(huì)驚疑,唉!這是怎么解的,解法這么好!這位教師說(shuō)道:“你想知道解法嗎?我們下節(jié)課再深入具體地探究”.這樣就激起了學(xué)生的求知欲望,為下節(jié)課的教學(xué)作好了充分的心理準(zhǔn)備.
總之,設(shè)疑能促使學(xué)生主動(dòng)參與到學(xué)習(xí)過(guò)程之中,啟發(fā)學(xué)生的積極思維,樹(shù)立學(xué)生學(xué)好數(shù)學(xué)的自信心,有利于學(xué)生良好心理品質(zhì)的培養(yǎng).在數(shù)學(xué)課中更多地運(yùn)用設(shè)疑法,才能充分激發(fā)學(xué)生學(xué)習(xí)的興趣,達(dá)到最佳的教學(xué)效果.
一、教學(xué)要從矛盾開(kāi)始
教學(xué)從矛盾開(kāi)始就是從問(wèn)題開(kāi)始.思維自疑問(wèn)和驚奇開(kāi)始,在教學(xué)中可設(shè)計(jì)一個(gè)學(xué)生不易回答的懸念或者一個(gè)有趣的故事,激發(fā)學(xué)生強(qiáng)烈的求知欲望,起到啟示誘導(dǎo)的作用.如在教授等差數(shù)列求和公式時(shí),有位教師先講了一個(gè)數(shù)學(xué)小故事:德國(guó)的“數(shù)學(xué)王子”高斯,在小學(xué)讀書(shū)時(shí),老師出了一道算術(shù)題:1+2+3+……+100=?,老師剛讀完題目,高斯就在他的小黑板上寫(xiě)出了答案:5050,其他同學(xué)還在一個(gè)數(shù)一個(gè)數(shù)的挨個(gè)相加呢.那么,高斯是用什么方法做得這么快呢?這時(shí)學(xué)生出現(xiàn)驚疑,產(chǎn)生一種強(qiáng)烈的探究反響.這就是今天要講的等差數(shù)列的求和方法--倒序相加法…….
二、設(shè)疑于重點(diǎn)和難點(diǎn)
教材中有些內(nèi)容是枯燥乏味,艱澀難懂的.如數(shù)列的極限概念及無(wú)窮等比數(shù)列各項(xiàng)和的概念比較抽象,是難點(diǎn).如對(duì)于=1這一等式,有些同學(xué)學(xué)完了數(shù)列的極限這一節(jié)后仍表懷疑.為此,一位教師在教學(xué)中插入了一段“關(guān)于分牛傳說(shuō)的析疑”的故事:傳說(shuō)古代印度有一位老人,臨終前留下遺囑,要把19頭牛分給三個(gè)兒子.老大分總數(shù)的1/2,老二分總數(shù)的1/4,老三分總數(shù)的1/5.按印度的教規(guī),牛被視為神靈,不能宰殺,只能整頭分,先人的遺囑更必須無(wú)條件遵從.老人死后,三兄弟為分牛一事而絞盡腦汁,卻計(jì)無(wú)所出,最后決定訴諸官府.官府一籌莫展,便以“清官難斷家務(wù)事”為由,一推了之.鄰村智叟知道了,說(shuō):“這好辦!我有一頭牛借給你們.這樣,總共就有20頭牛.老大分1/2可得10頭;老二分1/4可得5頭;老三分1/5可得4頭.你等三人共分去19頭牛,剩下的一頭牛再還我!”真是妙極了!不過(guò),后來(lái)人們?cè)跉J佩之余總帶有一絲懷疑.老大似乎只該分9.5頭,最后他怎么竟得了10頭呢?學(xué)生很感興趣,……老師經(jīng)過(guò)分析使問(wèn)題轉(zhuǎn)化為學(xué)生所學(xué)的無(wú)窮等比 數(shù)列各項(xiàng)和公式(|q|<1)的應(yīng)用.寓解疑于趣味之中.
三、設(shè)疑于教材易出錯(cuò)之處
英國(guó)心理學(xué)家貝恩布里奇說(shuō)過(guò):“差錯(cuò)人皆有之,作為教師不利用是不能原諒的.”學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中最常見(jiàn)的錯(cuò)誤是,不顧條件或研究范圍的變化,丟三掉四,或解完一道題后不檢查、不思考.故在學(xué)生易出錯(cuò)之處,讓學(xué)生去嘗試,去“碰壁”和“跌跤”,讓學(xué)生充分“暴露問(wèn)題”,然后順其錯(cuò)誤認(rèn)真剖析,不斷引導(dǎo),使學(xué)生恍然大悟,留下深刻印象. 如:若函數(shù)圖象都在X軸上方,求實(shí)數(shù)a的取值范圍. 學(xué)生因思維定勢(shì)的影響,往往錯(cuò)解為a>0且,得出0<a <1,而忽略了a=0的情況.
四、設(shè)疑于結(jié)尾
一堂好課也應(yīng)設(shè)“矛盾”而終,使其完而未完,意味無(wú)窮.課堂何嘗不是如此,一堂好課不是講完了就完了,而是詞已盡意無(wú)窮.
如在解不等式時(shí),一位教師先利用學(xué)生已有的知識(shí)解決這個(gè)問(wèn)題,即采用解兩個(gè)不等式組來(lái)解決,接著,又用如下的解法:
原不等式可化為:即,所以原不等式解集為:,學(xué)生會(huì)驚疑,唉!這是怎么解的,解法這么好!這位教師說(shuō)道:“你想知道解法嗎?我們下節(jié)課再深入具體地探究”.這樣就激起了學(xué)生的求知欲望,為下節(jié)課的教學(xué)作好了充分的心理準(zhǔn)備.
總之,設(shè)疑能促使學(xué)生主動(dòng)參與到學(xué)習(xí)過(guò)程之中,啟發(fā)學(xué)生的積極思維,樹(shù)立學(xué)生學(xué)好數(shù)學(xué)的自信心,有利于學(xué)生良好心理品質(zhì)的培養(yǎng).在數(shù)學(xué)課中更多地運(yùn)用設(shè)疑法,才能充分激發(fā)學(xué)生學(xué)習(xí)的興趣,達(dá)到最佳的教學(xué)效果.