特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦——考試網(wǎng)>學(xué)歷類(lèi)考試>中考頻道>中考科目>中考數(shù)學(xué)>

2017年鄂州中考數(shù)學(xué)模擬試題解析(2)

時(shí)間: 漫柔41 分享

  ∴AC= = =12,

  ∵AD=DC,DF⊥AC,

  ∴AF=CF= AC=6,

  ∴點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)是A,故E點(diǎn)與P點(diǎn)重合時(shí)△BCP的周長(zhǎng)最小,

  ∴DP=DE,

  ∵DE⊥AC,BC⊥AC,

  ∴DE∥BC,

  ∴△AEF∽△ABC,

  ∴ ,即 = ,解得AE= ,

  ∵DE∥BC,

  ∴∠AED=∠ABC,

  ∵∠DAB=∠ACB=90°,

  ∴Rt△AED∽R(shí)t△CBA,

  ∴ = ,即 = ,解得DE=12.5,即DP=12.5.

  故答案為:12.5.

  三、解答題

  16.計(jì)算:( )﹣2﹣6sin30°﹣( )0+ +| ﹣ |

  【考點(diǎn)】二次根式的混合運(yùn)算;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值.

  【分析】先算負(fù)指數(shù)冪,特殊角的三角函數(shù)值,0指數(shù)冪,以及絕對(duì)值,再算乘法,最后算加減,由此順序計(jì)算即可.

  【解答】解:原式=4﹣6× ﹣1+ ﹣ +

  =4﹣3﹣1+

  = .

  17.化簡(jiǎn): ,然后請(qǐng)自選一個(gè)你喜歡的x值,再求原式的值.

  【考點(diǎn)】分式的化簡(jiǎn)求值.

  【分析】原式括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分得到最簡(jiǎn)結(jié)果,把x=1代入計(jì)算即可求出值.

  【解答】解:原式=[ ﹣ ]•

  = •

  = •

  = ,

  當(dāng)x=1時(shí),原式=1.

  18.,線段AB繞某一點(diǎn)逆時(shí)針旋轉(zhuǎn)一定的角度得到線段A'B',利用尺規(guī)確定旋轉(zhuǎn)中心.(不寫(xiě)作法,保留作圖痕跡)

  【考點(diǎn)】作圖﹣旋轉(zhuǎn)變換.

  【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可知,旋轉(zhuǎn)中心在對(duì)應(yīng)點(diǎn)連線段的垂直平分線上.

  【解答】解:點(diǎn)O為所求作,

  19.蘭州市某中學(xué)對(duì)本校初中學(xué)生完成家庭作業(yè)的時(shí)間做了總量控制,規(guī)定每天完成家庭作業(yè)的時(shí)間不超過(guò)1.5小時(shí),該校數(shù)學(xué)課外興趣小組對(duì)本校初中學(xué)生回家完成作業(yè)的時(shí)間做了一次隨機(jī)抽樣調(diào)查,并繪制出頻數(shù)分布表和頻數(shù)分布直方圖()的一部分.

  時(shí)間(小時(shí)) 頻數(shù)(人數(shù)) 頻率

  0≤t<0.5 4 0.1

  0.5≤t<1 a 0.3

  1≤t<1.5 10 0.25

  1.5≤t<2 8 b

  2≤t<2.5 6 0.15

  合計(jì) 1

  (1)在圖表中,a= 12 ,b= 0.2 ;

  (2)補(bǔ)全頻數(shù)分布直方圖;

  (3)請(qǐng)估計(jì)該校1400名初中學(xué)生中,約有多少學(xué)生在1.5小時(shí)以內(nèi)完成了家庭作業(yè).

  【考點(diǎn)】頻數(shù)(率)分布直方圖;用樣本估計(jì)總體;頻數(shù)(率)分布表.

  【分析】(1)根據(jù)每天完成家庭作業(yè)的時(shí)間在0≤t<0.5的頻數(shù)和頻率,求出抽查的總?cè)藬?shù),再用總?cè)藬?shù)乘以每天完成家庭作業(yè)的時(shí)間在0.5≤t<1的頻率,求出a,再用每天完成家庭作業(yè)的時(shí)間在1.5≤t<2的頻率乘以總?cè)藬?shù),求出b即可;

  (2)根據(jù)(1)求出a的值,可直接補(bǔ)全統(tǒng)計(jì)圖;

  (3)用每天完成家庭作業(yè)時(shí)間在1.5小時(shí)以內(nèi)的人數(shù)所占的百分比乘以該校的總?cè)藬?shù),即可得出答案.

  【解答】解:(1)抽查的總的人數(shù)是: =40(人),

  a=40×0.3=12(人),

  b= =0.2;

  故答案為:12,0.2;

  (2)根據(jù)(1)可得:每天完成家庭作業(yè)的時(shí)間在0.5≤t<1的人數(shù)是12,補(bǔ)圖如下:

  (3)根據(jù)題意得: ×1400=910(名),

  答:約有多少910名學(xué)生在1.5小時(shí)以內(nèi)完成了家庭作業(yè).

  20.,在正方形ABCD和正方形ECGF中,連接BE,DG.求證:BE=DG.

  【考點(diǎn)】正方形的性質(zhì);全等三角形的判定與性質(zhì).

  【分析】根據(jù)正方形的性質(zhì)得出BC=CD,CE=CG,∠BCD=∠ECG=90°,求出∠BCE=∠DCG,根據(jù)全等三角形的判定得出△EBC≌△GDC,根據(jù)全等三角形的性質(zhì)得出即可.

  【解答】證明:∵在正方形ABCD和正方形ECGF中,

  ∴BC=CD,CE=CG,∠BCD=∠ECG=90°,

  ∴∠BCE=∠DCG=90°﹣∠ECD,

  在△EBC和△GDC中,

  ∴△EBC≌△GDC(SAS),

  ∴BE=DG.

  21.,一枚運(yùn)載火箭從地面O處發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從地面C處的雷達(dá)站測(cè)得AC的距離是6km,仰角是43°,1s后,火箭到達(dá)B點(diǎn),此時(shí)測(cè)得仰角為45.5°,這枚火箭從點(diǎn)A到點(diǎn)B的平均速度是多少?(結(jié)果精確到0.01)

  【考點(diǎn)】解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題.

  【分析】在Rt△AOC中,求出OA、OC,在Rt△BOC中求出OB,即可解決問(wèn)題.

  【解答】解:在Rt△OCA中,OA=AC•tan43°≈4.092,

  OC=AC•cos43°

  在Rt△OCA中,OB=OC•tan45.5°≈4.375,

  v=(OB﹣OA)÷t=(4.375﹣4.092)÷1≈0.28(km/s)

  答:火箭從A點(diǎn)到B點(diǎn)的平均速度約為0.28km/s.

  22.我市某工藝品廠生產(chǎn)一款工藝品、已知這款工藝品的生產(chǎn)成本為每件60元.

  經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn):該款工藝品每天的銷(xiāo)售量y(件)與售價(jià)x(元)之間存在著如下表所示的一次函數(shù)關(guān)系.

  售價(jià)x(元) … 70 90 …

  銷(xiāo)售量y(件) … 3000 1000 …

  (利潤(rùn)=(售價(jià)﹣成本價(jià))×銷(xiāo)售量)

  (1)求銷(xiāo)售量y(件)與售價(jià)x(元)之間的函數(shù)關(guān)系式;

  (2)你認(rèn)為如何定價(jià)才能使工藝品廠每天獲得的利潤(rùn)為40000元?

  【考點(diǎn)】一次函數(shù)的應(yīng)用;一元二次方程的應(yīng)用.

  【分析】(1)設(shè)一次函數(shù)的一般式y(tǒng)=kx+b,將(70,3000)(90,1000)代入即可求得;

  (2)按照等量關(guān)系“利潤(rùn)=(定價(jià)﹣成本)×銷(xiāo)售量”列出利潤(rùn)關(guān)于定價(jià)的函數(shù)方程,求解即可.

  【解答】解:(1)設(shè)一次函數(shù)關(guān)系式為y=kx+b,根據(jù)題意得

  解之得k=﹣100,b=10000

  所以所求一次函數(shù)關(guān)系式為y=﹣100x+10000(x>0)

  (2)由題意得(x﹣60)(﹣100x+10000)=40000

  即x2﹣160x+6400=0,所以(x﹣80)2=0

  所以x1=x2=80

  答:當(dāng)定價(jià)為80元時(shí)才能使工藝品廠每天獲得的利潤(rùn)為40000元.

  23.,拋物線y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C(0,3),頂點(diǎn)D的坐標(biāo)為(﹣1,4).

  (1)求拋物線的解析式;

  (2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;

  (3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=2 DQ,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo).

  【考點(diǎn)】二次函數(shù)綜合題.

  【分析】(1)設(shè)出二次函數(shù)頂點(diǎn)式,將C(0,3)代入解析式得到a=﹣1,從而求出拋物線解析式.

  (2)設(shè)M點(diǎn)橫坐標(biāo)為m,則PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周長(zhǎng)d=﹣2m2﹣8m+2,將﹣2m2﹣8m+2配方,根據(jù)二次函數(shù)的性質(zhì),即可得出m的值,然后求得直線AC的解析式,把x=m代入可以求得三角形的邊長(zhǎng),從而求得三角形的面積.

  (3)設(shè)F(n,﹣n2﹣2n+3),根據(jù)已知若FG=2 DQ,即可求得.

  【解答】解:(1)設(shè)函數(shù)解析式為y=a(x+1)2+4,

  將C(0,3)代入解析式得,a(0+1)2+4=3,

  a=﹣1,

  可得,拋物線解析式為y=﹣x2﹣2x+3;

  (2)由拋物線y=﹣x2﹣2x+3可知,對(duì)稱軸為x=﹣1,

  設(shè)M點(diǎn)的橫坐標(biāo)為m,則PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,

  ∴矩形PMNQ的周長(zhǎng)=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,

  ∴當(dāng)m=﹣2時(shí)矩形的周長(zhǎng)最大.

  ∵A(﹣3,0),C(0,3),設(shè)直線AC解析式為y=kx+b,

  解得k=1,b=3,

  ∴解析式y(tǒng)=x+3,當(dāng)x=﹣2時(shí),則E(﹣2,1),

  ∴EM=1,AM=1,

  ∴S= •AM•EM= ×1×1= .

  (3)∵M(jìn)點(diǎn)的橫坐標(biāo)為﹣2,拋物線的對(duì)稱軸為x=﹣1,

  ∴N應(yīng)與原點(diǎn)重合,Q點(diǎn)與C點(diǎn)重合,

  ∴DQ=DC,

  把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,

  ∴D(﹣1,4)

  ∴DQ=DC= ,

  ∵FG=2 DQ,

  ∴FG=4,

  設(shè)F(n,﹣n2﹣2n+3),

  則G(n,n+3),

  ∵點(diǎn)G在點(diǎn)F的上方,

  ∴(n+3)﹣(﹣n2﹣2n+3)=4,

  解得:n=﹣4或n=1.

  ∴F(﹣4,﹣5)或(1,0).

  24.,在△ABC中,∠A=90°,BC=10,△ABC的面積為25,點(diǎn)D為AB邊上的任意一點(diǎn)(D不與A、B重合),過(guò)點(diǎn)D作DE∥BC,交AC于點(diǎn)E.設(shè)DE=x,以DE為折線將△ADE翻折(使△ADE落在四邊形DBCE所在的平面內(nèi)),所得的△A'DE與梯形DBCE重疊部分的面積記為y.

  (1)用x表示△ADE的面積;

  (2)求出0

  (3)求出5

  (4)當(dāng)x取何值時(shí),y的值最大,最大值是多少?

  【考點(diǎn)】二次函數(shù)綜合題.

  【分析】(1)由于DE∥BC,可得出三角形ADE和ABC相似,那么可根據(jù)面積比等于相似比的平方用三角形ABC的面積表示出三角形ADE的面積.

  (2)由于DE在三角形ABC的中位線上方時(shí),重合部分的面積就是三角形ADE的面積,而DE在三角形ABC中位線下方時(shí),重合部分就變成了梯形,因此要先看0

  (3)根據(jù)(2)可知5

  (4)根據(jù)(2)(3)兩個(gè)不同自變量取值范圍的函數(shù)關(guān)系式,分別得出各自的函數(shù)最大值以及對(duì)應(yīng)的自變量的值,然后找出最大的y的值即可.

  【解答】解:(1)∵DE∥BC,

  ∴∠ADE=∠B,∠AED=∠C,

  ∴△ADE∽△ABC,

  ∴ ,

  即S△ADE= x2;

  (2)∵BC=10,

  ∴BC邊所對(duì)的三角形的中位線長(zhǎng)為5,

  ∴當(dāng)0

  (3)5

  ∵S△A′DE=S△ADE= x2,

  ∴DE邊上的高AH=A'H= x,

  由已知求得AF=5,

  ∴A′F=AA′﹣AF=x﹣5,

  由△A′MN∽△A′DE知 =( )2,S△A′MN=(x﹣5)2.

  ∴y= x2﹣(x﹣5)2=﹣ x2+10x﹣25.

  (4)在函數(shù)y= x2中,

  ∵0

  ∴當(dāng)x=5時(shí)y最大為: ,

  在函數(shù)y=﹣ x2+10x﹣25中,

  當(dāng)x=﹣ = 時(shí)y最大為: ,

  ∵ < ,

  ∴當(dāng)x= 時(shí),y最大為: .

猜你喜歡:

1.2017錦州中考數(shù)學(xué)練習(xí)試卷及解析

2.2017錦州中考數(shù)學(xué)練習(xí)試卷及解析

3.2017湖北中考數(shù)學(xué)練習(xí)試題及答案

4.2017黃石中考數(shù)學(xué)練習(xí)試題及答案

5.2017中考數(shù)學(xué)試卷附答案

6.2017湖北黃石中考數(shù)學(xué)模擬試題及答案

2017年鄂州中考數(shù)學(xué)模擬試題解析(2)

AC= = =12, ∵AD=DC,DFAC, AF=CF= AC=6, 點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)是A,故E點(diǎn)與P點(diǎn)重合時(shí)△BCP的周長(zhǎng)最小, DP=DE, ∵DEAC,BCAC, DE∥BC, △AEF∽△ABC, ,即 = ,解得
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 2017年?yáng)|營(yíng)中考數(shù)學(xué)練習(xí)試卷
    2017年?yáng)|營(yíng)中考數(shù)學(xué)練習(xí)試卷

    多做中考數(shù)學(xué)練習(xí)試題可以提升數(shù)學(xué)能力,學(xué)生在準(zhǔn)備考試的過(guò)程中掌握中考數(shù)學(xué)練習(xí)試題自然能考得好,以下是學(xué)習(xí)啦小編為你整理的2017年?yáng)|營(yíng)中考數(shù)學(xué)

  • 2017年德州數(shù)學(xué)中考模擬真題及答案
    2017年德州數(shù)學(xué)中考模擬真題及答案

    考生想要提升自己的中考數(shù)學(xué)成績(jī)要多做數(shù)學(xué)中考模擬真題,這樣才能更好提升成績(jī),以下是學(xué)習(xí)啦小編為你整理的2017年德州數(shù)學(xué)中考模擬真題及答案,希

  • 2017年德陽(yáng)中考數(shù)學(xué)模擬試卷
    2017年德陽(yáng)中考數(shù)學(xué)模擬試卷

    學(xué)生在中考數(shù)學(xué)考試前要多做中考數(shù)學(xué)模擬試題并多去練習(xí),這樣才能更好提升,以下是學(xué)習(xí)啦小編為你整理的2017年德陽(yáng)中考數(shù)學(xué)模擬試題,希望能幫到你

  • 2017年大慶中考數(shù)學(xué)練習(xí)真題
    2017年大慶中考數(shù)學(xué)練習(xí)真題

    中考數(shù)學(xué)要考出好成績(jī)就需要多做中考數(shù)學(xué)練習(xí)試題,學(xué)生在準(zhǔn)備考試的過(guò)程中多掌握數(shù)學(xué)練習(xí)試題自然能考得好,以下是學(xué)習(xí)啦小編為你整理的2017年大慶

32904