如何記憶高中數(shù)學(xué)知識(shí)的訣竅
如何記憶高中數(shù)學(xué)知識(shí)的訣竅
數(shù)學(xué)雖然是理科,但是要記憶的知識(shí)點(diǎn)也不少,比如,要記憶數(shù)學(xué)公式,數(shù)學(xué)原理等。很多同學(xué)不愿意記憶公式,覺得太難記了,其實(shí)有記憶方法的話,就會(huì)簡(jiǎn)單多了。下面由學(xué)習(xí)啦小編給你帶來(lái)關(guān)于如何記憶高中數(shù)學(xué)知識(shí)的訣竅,希望對(duì)你有幫助!
記憶高中數(shù)學(xué)的訣竅
訣竅1.系統(tǒng)記憶法
有位青年總結(jié)自己的經(jīng)驗(yàn)得出:“總結(jié)+消化=記憶”。這正是根據(jù)系統(tǒng)記憶法的思想總結(jié)出來(lái)的。因?yàn)橄到y(tǒng)記憶法,就是按照數(shù)學(xué)知識(shí)的系統(tǒng)性,把知識(shí)進(jìn)行恰當(dāng)?shù)谋容^、分類、條理化,順理成章,編織成網(wǎng),這樣記住的就不是零星的知識(shí)而是一串,它往往采取列表比較的形式,或抓住主線、內(nèi)在聯(lián)系把重要概念、公式和章節(jié)聯(lián)系串為一個(gè)整體。
在學(xué)習(xí)中,應(yīng)用系統(tǒng)記憶法來(lái)小結(jié),總結(jié)整理自己的知識(shí)系統(tǒng),對(duì)掌握知識(shí)大有裨益。
訣竅2.簡(jiǎn)化記憶法
根據(jù)記憶目標(biāo)的特點(diǎn)或自身規(guī)律,使用適當(dāng)方法將記憶目標(biāo)簡(jiǎn)化,是減輕記憶負(fù)擔(dān)、提高記憶效率的有效方法。
(1)口訣簡(jiǎn)化。中學(xué)數(shù)學(xué)中,有些方法如果能編成順口溜或歌訣,可以幫助記憶。例如,根據(jù)一元二次不等式ax2+bx+c>0(a>0,△>0)與ax2+bx+c<0(a>0,△>0)的解法,可編成乘積或分式不等式的解法口訣:“兩大寫兩旁,兩小寫中間”。即兩個(gè)一次因式之積(或商)大于0,解答在兩根之外;兩個(gè)一次因式之積(或商)小于0,解答在兩根之內(nèi)。當(dāng)然,使用口訣時(shí),必先將各個(gè)一次因式中x的系數(shù)化為正數(shù)。利用這一口訣,就很容易寫出乘積不等式(x-3)·(2x+1)>0的解是x
(2)圖表簡(jiǎn)化。有些知識(shí)借助表格也能幫助記憶。例如,0°、30°、45°、60°、90°等特殊角的三角函數(shù)值;等差與等比數(shù)列的定義、一般形式、通項(xiàng)公式an前n項(xiàng)的和sn性質(zhì)及注意事項(xiàng);指數(shù)與對(duì)數(shù)函數(shù)的定義、圖象、定義域、值域及性質(zhì);反三解函數(shù)的定義,圖象、定義域、主值區(qū)間、增減性及有關(guān)公式;最簡(jiǎn)三角方程的通值公式等等,都可以用表格幫助記憶。有些數(shù)學(xué)題的解題方法,也可以用表格化難為易、馭繁為簡(jiǎn)。例如,用列表法解乘積或分式不等式,計(jì)算多項(xiàng)式的乘法,求整系數(shù)方程的有理根等等,都是很好的方法,這種記憶法在復(fù)習(xí)中尤其應(yīng)該提倡。
(3)目標(biāo)簡(jiǎn)化。篩選出記憶目標(biāo)中具有代表性的部分,用以取代記憶目標(biāo)的整體,是簡(jiǎn)化記憶的又一常用方法。三角函數(shù)的積化和差與和差化積公式各有四個(gè),可利用兩角和與差的正余弦公式,由一組中的四個(gè)導(dǎo)出另一組中的四個(gè),因而可著重記憶積化的差公式即可。
(4)取名簡(jiǎn)化。給記憶目標(biāo)取一個(gè)形象的名字,可顧名釋義,記起這個(gè)記憶目標(biāo)。例如,對(duì)不等式|a|-|b|≤|a±b|≤|a|+|b|,針對(duì)其特征,設(shè)某三角形的三邊之長(zhǎng)分別為|a|、|b|、|a±b|,由于三角形的三邊關(guān)系(兩邊之和大于第三邊,兩邊之差小于第三邊)滿足這個(gè)不等式,故給其取名為“三角形不等式”。
(5)轉(zhuǎn)換簡(jiǎn)化。把復(fù)雜難記的記憶目標(biāo)甲,轉(zhuǎn)換為簡(jiǎn)單易記或早已熟記的事物乙,把乙連同甲與乙相互轉(zhuǎn)換的方法,作為新的記憶目標(biāo)記憶。當(dāng)需用甲時(shí),大腦會(huì)同時(shí)再現(xiàn)出甲、乙及甲與乙的轉(zhuǎn)換方法,此時(shí)甲往往是模糊的,而乙卻是清晰的,轉(zhuǎn)換乙便得到了清晰的甲,如萬(wàn)能公式,可利用圖所示的Rt△的邊角關(guān)系記憶:
訣竅3.聯(lián)合記憶
把具有相關(guān)意義的兩個(gè)或兩個(gè)以上的記憶目標(biāo),聯(lián)合在一起記憶,往往比孤立地記憶其中一個(gè)還要容易,這是因?yàn)椋盟鼈兊南嚓P(guān)意義由此及彼地聯(lián)想,經(jīng)過(guò)相互印證、相互補(bǔ)充,必然能收到事半功倍的記記效果。
(1)近似聯(lián)合。把音、義、式、形等方面具有一定相似之處的幾個(gè)記憶目標(biāo)聯(lián)合在一起。如把同次根式與同類根式的定義聯(lián)合在一起;把全等三角形與相似三角形的判定定理聯(lián)合在一起;把
橢圓與雙曲線的有關(guān)知識(shí)聯(lián)合在一起;把函數(shù)f(x+k)與f(x)的圖
解析幾何中F(x+k,y+h)=0與F(x,y)=0兩曲線之間的關(guān)系聯(lián)合在一起。
(2)反正聯(lián)合。把具有某種相反意義的兩個(gè)記憶目標(biāo)聯(lián)合在一起。如把查對(duì)數(shù)表的方法與查反對(duì)數(shù)表的方法聯(lián)合在一起;把充分條件的定義與必要條件的定義聯(lián)合在一起;把三垂線定理與其逆定理聯(lián)合在一起等。
(3)遞進(jìn)聯(lián)合。把具有從屬關(guān)系的幾個(gè)概念,或具有因果關(guān)系的幾個(gè)定理(公式)連同它們的先后順序聯(lián)合在一起記憶,不僅可由前者推出后者,而且也可由后者感知前者。如把對(duì)應(yīng)、映射、一一映射、逆映射等概念聯(lián)合在一起;把棱柱、直棱柱、正棱柱、長(zhǎng)方體、正方體等幾何體的定義聯(lián)合在一起;把兩角和的正余弦公式、二倍角公式、半角公式等聯(lián)合在一起等等。
訣竅4.意趣記憶
有意義的和感興趣的事物容易記住,這是每個(gè)有記憶力的人的共同感受,把平淡、枯燥的記憶目標(biāo)意趣化,例如,利用諧音或者生動(dòng)形象的比喻等,都是強(qiáng)化記憶的有效方法。
訣竅5.對(duì)比記憶法
是將一些相似的數(shù)學(xué)材料,列出它們的相同或相異點(diǎn)來(lái)比較的記憶方法。例如平面與空間圖形的性質(zhì),等差數(shù)列與等比數(shù)列的特征,微分與積分定義、公式、微分方程所描述的不同的物理模型、相似或相互對(duì)立的一些概念等等,應(yīng)用對(duì)比記憶法都可收到良好的記憶效果。
訣竅6.邏輯記憶法
按照知識(shí)的順序、層次、系統(tǒng)列出某單元知識(shí)結(jié)構(gòu)圖,根據(jù)知識(shí)結(jié)構(gòu)圖逐步分層記憶,可提高記憶的效率。例如,三角函數(shù)的和差角公式,倍角與半角公式,和積互換公式,就可按證明過(guò)程的邏輯先后順序列出公式結(jié)構(gòu)圖幫助記憶;同角的三角函數(shù)間的關(guān)系(俗稱八大公式)可根據(jù)三角函數(shù)線利用單位圓來(lái)幫助記憶;三角形的各種面積公式可按下面的邏輯順序記憶:
訣竅7.交替記憶法
即是把不同的學(xué)習(xí)內(nèi)容、不同的學(xué)科互相交替記憶;把學(xué)習(xí)和休息、學(xué)習(xí)和體育鍛煉互相交替。這樣,可以提高大腦的記憶力。
記憶高中數(shù)學(xué)的方法
1.分布記憶法
在理科和數(shù)學(xué)的學(xué)習(xí)中,也可移植豐子愷先生的“二十二遍讀書法”:第一天讀十遍,第二天、第三天各讀五遍,第四天讀二遍。這樣的記憶,大腦細(xì)胞可以得到適當(dāng)?shù)男菹?,用腦比較省力,既符合加強(qiáng)首次感知的規(guī)律,又符合記憶保持的規(guī)律。反之,老是重復(fù)同一材料,單調(diào)的刺激,容易引起大腦皮層的保護(hù)性抑制,使記憶力衰降。
2.循環(huán)記憶法
即是將要記憶的材料分成若干組,當(dāng)記后幾組時(shí),要有規(guī)律地復(fù)習(xí)記憶前面的幾組。也可用此方法于自學(xué)讀書。當(dāng)閱讀一本數(shù)學(xué)書時(shí),先讀第一章并記憶其中的一些主要結(jié)果;在讀第二章以后的書時(shí),應(yīng)分別簡(jiǎn)要地復(fù)讀前一章書中的主要結(jié)果;讀一章書也一樣,應(yīng)在讀后節(jié)內(nèi)容之前,復(fù)讀一下以前各節(jié)的主要內(nèi)容。這樣的循環(huán)記憶,實(shí)則是在強(qiáng)化識(shí)記的痕跡,利于記憶的保持,自然可收到深刻記憶的效果。
3.重復(fù)記憶
重復(fù)記憶有三種方式。
(1)標(biāo)志記憶法。在學(xué)習(xí)某一章節(jié)知識(shí)時(shí),先看一遍,對(duì)于重要部分用彩筆在下面畫上波浪線,在重復(fù)記憶時(shí),就不需要將整個(gè)章節(jié)的內(nèi)容從頭到尾逐字逐句的看了,只要看到波浪線,在它的啟示下就能重復(fù)記憶本章節(jié)主要內(nèi)容,這種記憶稱為標(biāo)志記憶。
(2)回想記憶法。在重復(fù)記憶某一章節(jié)的知識(shí)時(shí),不看具體內(nèi)容,而是通過(guò)大腦回想達(dá)到重復(fù)記憶的目的,這種記憶稱為回想記憶,在實(shí)際記憶時(shí),回想記憶法與標(biāo)志記憶法是配合使用的。
(3)使用記憶法。在解數(shù)學(xué)題時(shí),必須用到已記住的知識(shí),使用一次有關(guān)知識(shí)就被重復(fù)記憶一次,這種記憶稱為使用記憶。使用記憶法是積極的記憶,效果好。
4.理解記憶法
知識(shí)的理解是產(chǎn)生記憶的根本條件,對(duì)于數(shù)學(xué)知識(shí)特別要通過(guò)理解、掌握它的邏輯結(jié)構(gòu)體系進(jìn)行記憶。由于數(shù)學(xué)是建立在邏輯學(xué)基礎(chǔ)上的一門學(xué)科,它的概念、法則的建立,定理的論證,公式的推導(dǎo),無(wú)不處于一定的邏輯體系之中,因此,對(duì)于數(shù)學(xué)知識(shí)的理解記憶,主要在于弄清數(shù)學(xué)知識(shí)的邏輯聯(lián)系,把握它的來(lái)龍去脈,只有理解了的東西才能牢固記住它。因此,數(shù)學(xué)中的定理、公式、法則,都必須弄通它的來(lái)龍去脈,弄懂它們的證明過(guò)程,以便牢固記住它們。
用好這一方法的關(guān)鍵,在于學(xué)習(xí)要注意理解,這一方法,不僅對(duì)于數(shù)學(xué)學(xué)習(xí),就是對(duì)于其它學(xué)科的學(xué)習(xí)都有著廣泛的應(yīng)用。應(yīng)十分重視。