《分式方程》教學反思
作為一位優(yōu)秀的老師,我們都希望有一流的課堂教學能力,通過教學反思能很快的發(fā)現(xiàn)自己的講課缺點,那么你有了解過教學反思嗎?以下是小編收集整理的《分式方程》教學反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
《分式方程》教學反思1
本節(jié)課的重點是探究分式方程的解法,我首先舉一道一元一次方程復(fù)習其解法,然后通過解一道分式方程,啟發(fā)引導(dǎo)學生參照一元一次方程的解法,由學生自己探索、歸納分式方程的解法。學生不是停留在會課本知識層面,而是站在研究者的角度深入其境,使學生的思維得到發(fā)揮。
在教學設(shè)計上,以探究任務(wù)啟發(fā)引導(dǎo)學生自學自悟的方式,提供了學生自主探究的舞臺,營造了鍛練思維的空間,在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學生探究、歸納的能力。在課堂教學中,我時時注意營造思維氛圍,讓學生在探究中學會思考、表達。
在本課的教學過程中,我認為應(yīng)從這樣的幾個方面入手:
1. 分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進行檢驗。
2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學時應(yīng)充分體現(xiàn)這種化歸思想的教學。
3. 解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進行因式分解的步驟來,從而讓學生準確無誤地找出最簡公分母
4.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學生認真思考和討論。
在教學方法上,我采用類比滲透思想方法進行教學,通過與一元一次方程解法相比較,啟發(fā)引導(dǎo)學生自主探究、歸納分式方程的解法。運用類比教學法具有以下三方面的優(yōu)點:
1.通過復(fù)習一元一次方程的解法,學生在探究、歸納分式方程解法的同時進行類比,讓學生在解分式方程時有法可循,而不會覺得無從下手。
2.把分式方程的解法與一元一次方程的解法進行相比較,讓學生既可以溫習舊知識,又可以加深對新知識的記憶。
3.通過對一元一次方程和分式方程解法的類比,更能突顯分式方程解法中驗根的重要性。
《分式方程》教學反思2
本節(jié)課的重點是探究分式方程的解法,我首先舉一道一元一次方程復(fù)習其解法,然后通過解一道分式方程,啟發(fā)引導(dǎo)學生參照一元一次方程的解法,由學生自己探索、歸納分式方程的解法。學生不是停留在會課本知識層面,而是站在研究者的角度深入其境,使學生的思維得到發(fā)揮。
在教學設(shè)計上,以探究任務(wù)啟發(fā)引導(dǎo)學生自學自悟的方式,提供了學生自主探究的舞臺,營造了鍛練思維的空間,在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學生探究、歸納的能力。在課堂教學中,我時時注意營造思維氛圍,讓學生在探究中學會思考、表達。
在本課的教學過程中,我認為應(yīng)從這樣的幾個方面入手:
1。分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進行檢驗。
2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學時應(yīng)充分體現(xiàn)這種化歸思想的教學。
3。解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進行因式分解的步驟來,從而讓學生準確無誤地找出最簡公分母
4.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學生認真思考和討論。
在教學方法上,我采用類比滲透思想方法進行教學,通過與一元一次方程解法相比較,啟發(fā)引導(dǎo)學生自主探究、歸納分式方程的解法。運用類比教學法具有以下三方面的優(yōu)點:
1。通過復(fù)習一元一次方程的解法,學生在探究、歸納分式方程解法的同時進行類比,讓學生在解分式方程時有法可循,而不會覺得無從下手。
2。把分式方程的解法與一元一次方程的解法進行相比較,讓學生既可以溫習舊知識,又可以加深對新知識的記憶。
3。通過對一元一次方程和分式方程解法的類比,更能突顯分式方程解法中驗根的重要性。
《分式方程》教學反思3
一.設(shè)計思路:
設(shè)計思路建立在我校目標教學的前提下,由學生自主導(dǎo)學,然后再由教師考查和點撥,但是由于種種原因,我最終決定給學生一個半開半閉的區(qū)間。這節(jié)課的關(guān)鍵在前面的這步過渡,究竟是給學生一個完全自由的空間還是說讓學生在老師的引導(dǎo)下去完成,我先后作了多次試驗和論證,認為“完全開放”符合設(shè)計思路,但是學生在有限的時間內(nèi)難以完成教學任務(wù),故我們最終決定和學生一起共同完成。
二.教學知識點:
1.在本課的教學過程中,掌握范圍分式方程的解法是關(guān)鍵,所以由兩個習題過渡后,我復(fù)習了一元一次方程的解法,然后引導(dǎo)學生嘗試利用解一元一次方程方法的基礎(chǔ)上一起探索探索解分式方程的解法。我先作一示范,學生練習格式,接著出現(xiàn)有增根的練習題,依然讓學生解決,由于學生不會檢驗根的情況,所以,些時再詳究增根產(chǎn)生的原因,怎樣檢驗增根等問題。
2.在利用類比法解分式方程這一過程中,分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學時應(yīng)滲透種化歸思想的教學。
3.本節(jié)課的難點是對分式方程可能產(chǎn)生增根的原因,我為了讓學生更深刻的理解就用了兩個分式方程的解答過程進行對比,體現(xiàn)驗根的重要性及必要性,
充分體現(xiàn)學生為主體,教師為主導(dǎo)的教學體系。
三.課堂效果:
在這節(jié)公開課上,學生狀態(tài)不錯,所有的學生都能積極思考,踴躍回答問題,在課堂練習和最后的課堂小測里,學生的作答規(guī)范正確,而且對于增根產(chǎn)生的原因及相關(guān)知識點的難題的突破學生掌握的不錯。
整節(jié)課下來,基本能夠達成教學目標,但是作為年輕教師,我在一些細節(jié)的處理上仍然需要改進。個別教學語言不夠規(guī)范,而且利用新知識的學習過程,對舊知識的復(fù)習仍然不夠,語速有點快,個別問題的引導(dǎo)可以更深層次,沒有充分放手讓學生突破難點,也是比較遺憾的地方,希望聽課的老師給我多提意見,我會珍惜的。
《分式方程》教學反思4
一、設(shè)計思路
:本節(jié)課作為分式方程的第一節(jié)課,是在學生掌握了一元一次方程的解法及分式四則混合運算的基礎(chǔ)上展開的,既是對前一節(jié)內(nèi)容的深化,又為以后的教學 應(yīng)用 打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。本節(jié)的教學重點是讓學生清楚的認識到分式方程也是解決實際問題的工具之一,探索分式方程概念,明確分式方程與整式方程的區(qū)別和聯(lián)系。二.教學知識點:在本課的教學過程中,我認為應(yīng)從這樣的幾個方面入手:
1、在實際問題中充分理解題意,尋找等量關(guān)系,并依據(jù)等量關(guān)系列出方程。
2、分式方程和整式方程的區(qū)別:分清楚分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。
3、分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學時應(yīng)充分體現(xiàn)這種化歸思想的教學。
三、總體反思:首先是學生如何順利的找到題目中的等量關(guān)系,書本給出兩個例子較難,按照書本的引入,一開始課堂就可能處以一種安靜的思維,處于很難打開的狀態(tài),不能有效地激發(fā)學生學習興趣與激情,所以才在學案中搭梯子降低難度,讓學生體會到成功的喜悅,這樣學生才會愿意繼續(xù)探索與學習;實際問題的難度設(shè)置上是層層深入,問題也是分層次性,能夠讓不同層面的學生都有不同的體會與感受。
其次在教學過程中應(yīng)提高教師自身的隨機應(yīng)變的能力和預(yù)設(shè)問題能力,課前充分備好學生。例如:以前學過整式方程,我們以前只是說一次方程之類的,沒有系統(tǒng)的歸類它是整式方程。如果不事先詳細解釋清楚整式方程這個詞時,合作探究二進行的就不會很順利。
最后,我們應(yīng)讓恰到好處的鼓勵語和評價貫穿于教學過程中,只有這樣,學生才能不斷增強自信,在愉悅中探究新知,解決問題。
總而言之,教無定法,學無定法。我們應(yīng)在教改的道路上不斷充實自我,完善自我。
《分式方程》教學反思5
本節(jié)課作為分式方程的第一節(jié)課,是在學生掌握了一元一次方程的解法及分式四則混合運算的基礎(chǔ)上展開的,既是前一節(jié)的深化,同時解決了解方程的問題,又為以后的教學——“應(yīng)用”打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。
本節(jié)的教學重點是探索分式方程概念、會解可化為一元一次方程的分式方程、明確分式方程與整式方程的區(qū)別和聯(lián)系。教學難點是如何將分式方程轉(zhuǎn)化成整式方程。本節(jié)教材中的引例分式方程較復(fù)雜,學生直接探索它的解法有些困難。我是從簡單的整式方程引出分式方程后,再引導(dǎo)學生探究它的解法。這樣很輕松地找到新知識的切入點:用等式性質(zhì)去分母,轉(zhuǎn)化為整式方程再求解。因此,學生學的效果也較好。
我認為比較成功的
1、把思考留給學生,課堂教學試一試這個環(huán)節(jié)中,我把更多的思維空間留給學生。問題不輕易直接告訴學生答案,而由學生通過動手動腦來獲得,從而發(fā)揮他們的主觀能動性。我主要在做題方法上指導(dǎo),思維方式上點撥。改變那種讓學生在自己后面亦步亦趨的習慣,從而成為愛動腦、善動腦的學習者。
2、積極正確的引導(dǎo),點撥。保證學生掌握正確知識,和清晰的解題思路。由于學生總結(jié)的語言有限,我就把本節(jié)課的重點內(nèi)容:解分式方程的思路,步驟,如何檢驗等都用多媒體形式給學生展示出來。還有在解分式方程過程中容易出現(xiàn)的問題都給學生做了強調(diào)。
3、及時檢查糾正,保證學生認識到自己的錯誤并在第一時間內(nèi)更正。學生在做題過程中我就在教室巡視,及時發(fā)現(xiàn)學生的錯誤,及時糾正。對于困難的學生也做個別輔導(dǎo)。
雖然在課堂上做了很多,但也存在許多不足的地方,這也是我在今后教學中應(yīng)該注意的地方。第一,講例題時,先講一個產(chǎn)生增根的較好,這樣便于說明分式方程有時無解的原因,也便于講清分式方程檢驗的必要性,也是解分式方程與整式方程最大的區(qū)別所在,從而再強調(diào)解分式方程必須檢驗,不能省略不寫這一步。第二,給學生的鼓勵不是很多。鼓勵可以讓學生有充分的自信心?!靶判氖浅晒Φ囊话搿?,“在今后的課堂教學中,應(yīng)尊重其差異性,盡可能分層教學,評價標準多樣化。多鼓勵,少批評;多肯定,少指責。用動態(tài)的、發(fā)展的、積極的眼光看待每個學生,幫助他們樹立自信心。贊美的力量是巨大的,有時,一句贊美的話,可以改變?nèi)说囊簧R痪淇隙ǖ脑挕⒁粋€贊許的點頭、一張表示優(yōu)勝的卡片,都是很好的鼓勵,會起到意想不到的良好結(jié)果。
《分式方程》教學反思6
本節(jié)的教學重點是探索分式方程概念、會解可化為一元一次方程的分式方程、明確分式方程與整式方程的區(qū)別和聯(lián)系。教學難點是如何將分式方程轉(zhuǎn)化成整式方程。
下面結(jié)合教學過程談?wù)勛约旱膸c感悟:
一、知識鏈接部分我設(shè)計了分式有無意義和找?guī)捉M分式的最簡公分母,幫助學生回憶舊知識,并且為本節(jié)課解分式方程掃清障礙。
反思:在這個環(huán)節(jié)里,出現(xiàn)了一個問題,就是對學生估計過高,尤其是最簡公分母的找法中下游的學生把舊知識忘了,造成浪費了課上的時間。
二、由課本中的百米賽跑的應(yīng)用題引出分式方程的概念。我把課本中的閱讀和一起探究改為幾個小問題讓學生自主探究然后小組內(nèi)交流討論。由于學生對于應(yīng)用題的掌握太差,造成在這個環(huán)節(jié)浪費了太多的時間。
反思:因為本節(jié)課的重點和難點是解分式方程,所以在以后的教學中我個人認為這一部分應(yīng)該不用。改為解簡單的整式方程,再給出幾個分式方程讓學生自己判斷直接得出分式方程的意義,節(jié)省出時間讓學生重點學習和練習解分式方程。本節(jié)課值得欣喜的是四班的優(yōu)生反應(yīng)靈敏,
四、讓學生自學課本例一,也就是解分式方程,分析課本做法的依據(jù),和自己的做法是在否一致,會用課本的方法解題??赐旰螅易寣W生自己做到導(dǎo)綱上。很多同學看完后還不是很理解,所以,我又讓小組自己討論了一下,弄明白如何做題。最后,我在黑板上板書了例題,然后,讓學生將自己的糾正一下。
反思:這個內(nèi)容是這節(jié)的重難點,由于前面已經(jīng)做過鋪墊,讓學生自己嘗試解過分式方程,所以,在這里我設(shè)想的是學生看完課本,明白教材的做法,自己會運用同樣的方法解決分式方程。但是,在實際的操作過程中,發(fā)現(xiàn)一個問題,同學們并沒有真正理解教材時怎么處理的,他們被第二環(huán)節(jié)中自己的做法禁錮住了,很多同學都先通分。通分很好,但通分的目的還是為了去分母。這點我沒有強調(diào)到位。同時,檢驗的過程我沒有板書在黑板,只是口頭強調(diào)了一下,致使很多學生印象不深,沒有進行檢驗。
糾正措施:重點強調(diào)化分式方程為整式方程的依據(jù)和做法。就這一步,安排幾個題進行專門訓(xùn)練,小組合作,直到每個組員都能找到最簡公分母,并會去掉分母為止。將第二課時提到這節(jié)點撥,在這節(jié)就讓學生明白分式方程為何要檢驗,從開始就讓學生養(yǎng)成檢驗的好習慣。
五、歸納解分式方程的一般步驟。根據(jù)上面的解題過程,小組總結(jié)出解題步驟。(在提示中,學生初步了解了大體步驟)
六、自學課本例二,弄明白后做到導(dǎo)綱上。
(這個環(huán)節(jié)設(shè)置的目的是讓學生進一步熟悉分式方程的解法。注意一些細節(jié)問題。)
七、鞏固練習。做導(dǎo)綱四道題。小組批閱。
八、總結(jié)這節(jié)課的知識。(由于前面進行不是很順利,總結(jié)有些匆忙)
總體反思
這節(jié)課是一堂新授課。因此,讓學生對知識有透徹的理解是最重要的。我們的導(dǎo)綱也設(shè)置了很多的環(huán)節(jié)來引導(dǎo)學生,提高學生的學習興趣。
本節(jié)課的關(guān)鍵是如何過渡,究竟是給學生一個完全自由的空間還是讓學生在老師的引導(dǎo)下去完成,“完全開放”符合設(shè)計思路,符合課改要求,但是經(jīng)過教學發(fā)現(xiàn),學生在有限的時間內(nèi)難以完成教學任務(wù),因此,先講解,做示范,再練習更好些。
在教學過程中,由于種種原因,存在著不少的不足。
1、回顧引入部分題目有點多,難度有些高,沒有達到原來設(shè)想的調(diào)動積極性的作用。應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進,符合人類認知規(guī)律。
2、由于經(jīng)驗不足,隨機應(yīng)變的能力有些欠缺,對在教學中出現(xiàn)的新問題,應(yīng)對的不理想,沒有立刻采取有效措施解決問題。例如,在復(fù)習整式方程時,學生并不像想象中對整式方程解題過程很了解,我就引導(dǎo)大家一起復(fù)習了一下,在這里,如果再臨時出幾個題目鞏固一下,效果也許更好些。
3、教學重點強調(diào)力度不夠。對學生理解消化能力過于相信,在看例一的過程中,每一步的依據(jù)都進行了講解,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進行專項訓(xùn)練或重點分析。例如,就學生的不同做法進行分析,讓他們明白課本的這種方法最簡單最方便。同時,通過板書示范分式方程的解題。
4、時間掌握不夠。備學生不夠充分,導(dǎo)致突發(fā)事件過多,時間被浪費了,以致總結(jié)過于匆忙。
這次的課讓我感觸頗深。在各位老教師無私地指導(dǎo)和細心地講評中,我更看到了自己的不足,在今后的教學中,我會多思考,充分的將“學生備好”,多積累經(jīng)驗,向老教師請教,培養(yǎng)自己應(yīng)對突發(fā)情況的能力,做個成功的“引導(dǎo)者”。
《分式方程》教學反思7
1、在復(fù)習中引入新的教學重點,回顧以往所學習的方程知識,采用讓學生自己說出幾個一元一次方程并求解的方法,充分發(fā)揮了學生的主動性,活躍了課堂氣氛。為本節(jié)課開了一個好頭。
2、利用學生的一個求不出解的一元一次方程(x-1)/3+1=(2x-3)/6,借機讓學生明確可化為ax=b(a不等于0)的方程才是一元一次方程。自然巧妙的讓學生為后面的學習做好了鋪墊。也吸引了學生的注意力,讓學生覺得有趣而一步一步的聽下去。
3、通過設(shè)問,活動,讓學生親自感知,體驗,在感知和體驗中進行質(zhì)疑、思考與探究,通過質(zhì)疑、思考與探索發(fā)現(xiàn)新知,激發(fā)了學生的參與熱情,培養(yǎng)了學生的探索意識,使學生在喜悅的氣氛下自主的學習。
通過本節(jié)課,也使我領(lǐng)悟到,在今后的教學中,應(yīng)做到以下幾點:
1、變枯燥為有趣同,讓學生成為整個教學的重點。
興趣是最好的老師,只有充分調(diào)動學生的學習熱情,才能使學生真正參與學習中來,才能主動地去學習。當然,這需要老師多下功夫,多聯(lián)系實際,多設(shè)計情景,讓學生覺得不是在上課,而是在演電視劇,而他就是其中的主人公。
2、變復(fù)雜為簡單。
越簡單學生就越想學,越會做學生就越想做,簡單之中蘊含著大道理,簡單的做多了,熟練了,才可能去做復(fù)雜的。當然這需要形式多樣,而不能單一。
3、給學生足夠的思考空間,不要急于給出答案,就是學生說錯了,也不要把學生硬拉過來,而應(yīng)該給學生留下思考的空間。
《分式方程》教學反思8
在分式方程應(yīng)用題的教學中,我發(fā)現(xiàn)學生們往往會遇到一些困難。其中最主要的原因是學生們對于分式方程的概念不夠清晰,導(dǎo)致他們無法準確理解題目中的信息并進行運算。因此,我覺得在教學中應(yīng)該加強對分式方程概念的講解,并結(jié)合實際應(yīng)用來讓學生更好地理解和掌握這個知識點。
另外,在教學中,我也發(fā)現(xiàn)學生們對于分式方程的運算不夠熟練,導(dǎo)致他們無法快速準確地解決問題。因此,在教學中我會加強對于分式方程的運算規(guī)則的講解,并給予大量的練習來讓學生熟練掌握這些規(guī)則。同時,我也會提供一些相關(guān)的例題來讓學生更好地理解和掌握分式方程的應(yīng)用方法。
最后,我覺得在教學中也應(yīng)該注重學生們的實際應(yīng)用能力。因為分式方程通常與實際生活中的問題緊密相關(guān),所以在教學中可以根據(jù)具體的場景來設(shè)計應(yīng)用題,這樣可以激發(fā)學生們學習的興趣,并讓他們更好地理解和掌握這個知識點。
分式方程應(yīng)用題教學需要注重概念的講解、運算規(guī)則的熟練掌握和實際應(yīng)用能力的提升。只有在這三方面都得到了充分的關(guān)注和培養(yǎng),才能讓學生們真正掌握分式方程的應(yīng)用方法,并能夠靈活運用這個知識點來解決實際生活中的問題。
《分式方程》教學反思9
數(shù)學的學習過程應(yīng)當是一個充滿生命力的過程。我們在教學中也應(yīng)該想辦法讓學生動起來,使課堂活動起來。在今天我所聽的《分式方程的應(yīng)用》一課,也使我體會到了這一點。
本節(jié)課是《分式方程的應(yīng)用》的第一課時,課堂上顧老師并沒有純粹地就題論題,而是采用了如下方法:一是改變例題和練習的呈現(xiàn)形式,使教學內(nèi)容更有趣味性。二是讓學生自編應(yīng)用題目,體驗學習數(shù)學的快樂。尤其是在讓學生自編應(yīng)用題的時候,個個都是緊皺眉頭,冥思苦想,很快就開始你說我說,一個個精神抖擻,煞那間教室中一片熱鬧的場面。顧老師這時就抓住這個機會,讓同學們之間互相交流,各自說出自己編的題目。同學們都能聯(lián)系自己身邊發(fā)生的或與生活密切相關(guān)的實際例子。通過這樣的活動,我認為一方面可以鍛煉學生的思維,另一方面也可以提高學生解決實際問題的能力。從而也可以使學生體會到數(shù)學的應(yīng)用價值。
在以后的教學中,我也要象顧老師一樣,精心設(shè)計活動,充分調(diào)動學生參與學習的積極性,使學生動起來,課堂活起來,真正使學生樂有所學,樂有所獲。
《分式方程》教學反思10
應(yīng)用題教學是培養(yǎng)學生分析問題和解決問題的一個非常重要的手段。但應(yīng)用題閱讀量大、建模難度高,學生往往無從下手。在教學中,我發(fā)現(xiàn)教師教的吃力,學生學的也很吃力,很多學生看見應(yīng)用題就有一種說不出的恐懼感。于是在列分式方程解應(yīng)用題的教學中,我試著運用表格分析法來進行應(yīng)用題的教學,讓學生有章可循,并取得了很好的效果。
一、教學案例展示
例題:某校招生錄取時,為了防止數(shù)據(jù)輸入出錯,2640名學生的成績數(shù)據(jù)分別由兩位程序操作員各向計算機輸入一遍,然后讓計算機比較兩人的輸入是否一致。已知甲的輸入速度是乙的2倍,結(jié)果甲比乙少用2小時輸完。問這兩個操作員每分鐘各能輸入多少名學生的成績?
分析:題中涉及工作量、工作效率、工作時間三量關(guān)系,甲、乙兩種狀態(tài)。根據(jù)題意,設(shè)乙每分鐘能輸入x名學生的成績,則甲每分鐘能輸入2x名學生的成績,用表格分析問題。
步驟一:列出表格
步驟二:依次填寫表格信息
表格的第一行填寫題中最清晰的量,即工作量(甲、乙的工作量均為2640名學生);表格的第二行填寫題中所設(shè)的量,即工作效率(甲的工作效率是2x名/分鐘,乙的工作效率):表格第三行填寫第三個量,即工作時間
《分式方程》教學反思11
列方程解應(yīng)用題七年級一年就遇到了三次,一元一次的,二元一次的,還有這次的分式的,步驟基本上一樣,審、設(shè)、列、解、驗、答。
問題還是出現(xiàn)在審題上,其實方法也類似,找已知的未知的量,找描述等量關(guān)系的語句,可以列表分析,還可以直接將文字轉(zhuǎn)化為數(shù)學式子,我經(jīng)常在啟發(fā)時說,某某同學剛才回答時為什么能很快找到等量關(guān)系呢,是因為他知道要關(guān)注那些重要的東西,比如數(shù)據(jù),比如題中出現(xiàn)的量,等等,就想語文閱讀時弄清楚時間,人物,事情一樣。
于是在課堂上例題的分析,我總是把大量的時間放在啟發(fā)學生理解題意上,老實說就算是語文的課外閱讀,學生多讀幾遍也總讀點味道出來了,可對于數(shù)學問題,有些學生讀了一遍題目愣是一點感覺沒有,對數(shù)字稍微敏感一點的也能找到相應(yīng)的量吧,但就是這些,讓學生最頭疼的,最郁悶,想得抓狂了還是找不到等量關(guān)系。
還是多留給學生點思考的空間吧。其實大多數(shù)的學生在老師的啟發(fā)下還是能對問題的理解深刻一點的,題目做的多了,總會產(chǎn)生一些感覺,套用一句老話,質(zhì)變是量變的積累,量變到了一定的程度就會發(fā)生質(zhì)變,希望我和學生們的努力能讓質(zhì)變早日到來。
《分式方程》教學反思12
在本課的教學過程中,我認為應(yīng)從這樣的幾個方面入手:
1.分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進行檢驗。
2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學時應(yīng)充分體現(xiàn)這種化歸思想的教學。
3.解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進行因式分解的步驟來,從而讓學生準確無誤地找出最簡公分母
4.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學生認真思考和討論。
《分式方程》教學反思13
一、設(shè)計思路:
本節(jié)課作為分式方程的第一節(jié)課,是在學生掌握了一元一次方程的解法及分式四則混合運算的基礎(chǔ)上展開的,既是對前一節(jié)內(nèi)容的深化,又為以后的教學——“應(yīng)用”打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。本節(jié)的教學重點是讓學生清楚的認識到分式方程也是解決實際問題的工具之一,探索分式方程概念,明確分式方程與整式方程的區(qū)別和聯(lián)系。
二、教學知識點:
在本課的教學過程中,我認為應(yīng)從這樣的幾個方面入手:
1、在實際問題中充分理解題意,尋找等量關(guān)系,并依據(jù)等量關(guān)系列出方程。
2、分式方程和整式方程的區(qū)別:分清楚分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。
3、分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學時應(yīng)充分體現(xiàn)這種化歸思想的教學。
三、總體反思
首先是學生如何順利的找到題目中的等量關(guān)系,書本給出兩個例子較難,按照書本的引入,一開始課堂就可能處以一種安靜的思維,處于很難打開的狀態(tài),不能有效地激發(fā)學生學習興趣與激情,所以才在學案中搭梯子降低難度,讓學生體會到成功的喜悅,這樣學生才會愿意繼續(xù)探索與學習;實際問題的難度設(shè)置上是層層深入,問題也是分層次性,能夠讓不同層面的學生都有不同的體會與感受。
其次在教學過程中應(yīng)提高教師自身的隨機應(yīng)變的能力和預(yù)設(shè)問題能力,課前充分備好學生。例如:以前學過整式方程,我們以前只是說一次方程之類的,沒有系統(tǒng)的歸類它是整式方程。如果不事先詳細解釋清楚整式方程這個詞時,合作探究二進行的就不會很順利。
最后,我們應(yīng)讓恰到好處的鼓勵語和評價貫穿于教學過程中,只有這樣,學生才能不斷增強自信,在愉悅中探究新知,解決問題。
總而言之,教無定法,學無定法。我們應(yīng)在教改的道路上不斷充實自我,完善自我。
《分式方程》教學反思14
初三第一輪復(fù)習至關(guān)重要,在這一輪復(fù)習中我們教師如能精心策劃每一節(jié)課(學習目標的確定、習題的分層設(shè)計、課堂中學生們的學習方式的選擇……),就會讓不同層次學生都能得以提升,從而提高數(shù)學平均成績。所以,在復(fù)習《一元一次方程和分式方程的應(yīng)用》這節(jié)課時,我首先仔細翻閱了七年級(上)和八年級(下)的數(shù)學書,然后從這兩本書中選擇了具有代表性的十二道題應(yīng)用題留做了家庭作業(yè),要求學生們認真寫在作業(yè)本上,目的在于回憶各類題的相關(guān)公式和思維方式,從而把基礎(chǔ)牢牢抓住。
通過課前組長作業(yè)的檢查,我發(fā)現(xiàn)了很多問題,例如:行程問題單位不統(tǒng)一或設(shè)中速度無單位、利潤問題弄不清各種價(售價、標價、定價、進價……)的含義、不認真審視題中的關(guān)鍵字眼等等。看到這些“意料中”的錯誤,我感覺我的前置性作業(yè)做到了“查缺”,那么課堂上如何“補漏”就成為了最大的關(guān)鍵。針對課前的檢查,我確定了課堂上學生們的學習方式:先通過組內(nèi)的“群學”解決共性問題,再通過“對學”進行“一幫一”,最后再通過幾對“師友”間的相互點評進行全班性的交流和共識,我認為本節(jié)課完成了我在備課中設(shè)定的教學目標,同學們通過一系列的學習方式解決了“獨學”中遇到的困惑。
但是本節(jié)課留給我更多是思考:如何通過“獨學、對學、群學”等學習方式高效地完成初三的各階段復(fù)習?每種方式進入初三又該如何改進和發(fā)展才能恰到好處地發(fā)揮作用呢?相信“方法總比困難多”,我會在今后的教學中不斷吸取他人成功的經(jīng)驗,在摸索中前進。
《分式方程》教學反思15
分式初中數(shù)學中重要的一章,在中考中占有一定的比重。學生已基本掌握了分式的有關(guān)知識(分式的概念、分式的基本性質(zhì)、約分、通分、分式的運算、分式方程和能化為一元一次方程的分式方程的應(yīng)用題等),并且獲得了學習代數(shù)知識的常用方法,感受到代數(shù)學習的實際應(yīng)用價值。
一、本章可以讓學生通過觀察、類比、猜想、嘗試等活動學習分式的運算法則,發(fā)展他們的合情推理能力,所以復(fù)習時重點應(yīng)放在對法則的探索過程上。一定要讓學生充分活動起來。在觀察、類比、猜想、嘗試當一系列思想活動中發(fā)現(xiàn)法則、理解法則、應(yīng)用法則,同時還要關(guān)注學生對算理的理解,以培養(yǎng)學生的代數(shù)表達能力、運算能力和有理的思考問題能力??墒俏以谥R的傳授上并沒有注重探索、類比法則,而重在對分式四則運算法則的運用和分式方程的運用上,沒有抓住教學的關(guān)鍵環(huán)節(jié)恰當?shù)倪x擇教學方法。今后要避免類似事情的發(fā)生。
二、復(fù)習中的重建
分式的運算(加、減、乘、除、乘方和混合運算)是代數(shù)恒等變形的基礎(chǔ)之一,但是不能盲目的加大運算量與題目的難度,重點應(yīng)放在對運算過程推理的理解上,把分式的基本性質(zhì)做到靈活運用。
再則,對課本上關(guān)于分式的具體問題一定要重視,并關(guān)注學生在這些具體活動中的投入程度,看他們能否積極主動地參與,其次看學生在這些活動中的思維發(fā)展水平—-—能否獨立思考?能否用數(shù)學語言表達自己的想法?能否反思自己的思維過程?進而發(fā)現(xiàn)新的問題,培養(yǎng)學生解決問題的能力!提高學生的學習興趣!