族系數(shù)學(xué)二次函數(shù)教學(xué)反思
時(shí)間:
志藝942由 分享
族系數(shù)學(xué)二次函數(shù)教學(xué)反思
一次函數(shù),認(rèn)識(shí)了一元二次方程之后的二次函數(shù)的第一節(jié)課,從課本的體系來看,這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實(shí)際問題中對(duì)定義域的限制。接下來是學(xué)習(xí)啦為大家?guī)淼臄?shù)學(xué)二次函數(shù)教學(xué)反思,望大家喜歡。
數(shù)學(xué)二次函數(shù)教學(xué)反思范文一
課后查看了數(shù)學(xué)課程標(biāo)準(zhǔn)中對(duì)二次函數(shù)的要求:
1、通過對(duì)實(shí)際問題情境的分析確定二次函數(shù)的表達(dá)式,并體會(huì)二次函數(shù)的意義。
2、會(huì)用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識(shí)二次函數(shù)的性質(zhì)。
3、會(huì)根據(jù)公式確定圖象的頂點(diǎn)、開口方向和對(duì)稱軸(公式不要求記憶和推導(dǎo)),并能解決簡(jiǎn)單的實(shí)際問題。
4、會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解。
發(fā)現(xiàn)并沒有提到用頂點(diǎn)式來求二次函數(shù)的解析式,而且在后面的幾節(jié)課的教學(xué)中也沒有要求用頂點(diǎn)式來求二次函數(shù)的解析式。但是我認(rèn)為新課標(biāo)所提出的要求應(yīng)該是對(duì)學(xué)生的最低要求,它并不反對(duì)教師結(jié)合學(xué)生的實(shí)際對(duì)教材的重新處理。并且從教學(xué)的反饋來看,加上了這3個(gè)練習(xí)學(xué)生能較好的理解本課的教學(xué)目標(biāo),同時(shí)也能對(duì)前面所學(xué)的二次函數(shù)頂點(diǎn)的知識(shí)加深印象。適應(yīng)學(xué)生的最近發(fā)展區(qū)。何樂而不為。
數(shù)學(xué)二次函數(shù)教學(xué)反思范文二
這節(jié)課是在學(xué)完正、反比例、一次函數(shù),認(rèn)識(shí)了一元二次方程之后的二次函數(shù)的第一節(jié)課,從課本的體系來看,這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實(shí)際問題中對(duì)定義域的限制。
但是如果光從這些知識(shí)點(diǎn)上來講這節(jié)課,其實(shí)很簡(jiǎn)單,學(xué)生在原有知識(shí)的儲(chǔ)備基礎(chǔ)上很容易遷移和接受這些知識(shí),那么這節(jié)課還有什么好設(shè)計(jì)的呢?
重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個(gè)實(shí)際問題,由此引出了二次函數(shù),我才意識(shí)其實(shí)這節(jié)課的重點(diǎn)實(shí)際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn),從而形成定義”上,有了這個(gè)認(rèn)識(shí),一切變得簡(jiǎn)單了!
整節(jié)課的流程可以這樣概括:學(xué)生感興趣的簡(jiǎn)單實(shí)際問題——引出學(xué)過的一次函數(shù)——復(fù)習(xí)學(xué)過的所有函數(shù)形式——設(shè)問:有沒有新的函數(shù)形式呢?——探索新的問題——形成關(guān)系式——是函數(shù)嗎?——是學(xué)過的函數(shù)嗎?——探索出新的函數(shù)形式——概括新函數(shù)形式的特點(diǎn)——將特點(diǎn)公式化——形成二次函數(shù)定義——有練習(xí)鞏固定義特點(diǎn)——返回實(shí)際問題討論實(shí)際問題對(duì)自變量的限制——提出新的問題,深入討論——課堂的小結(jié),這樣設(shè)計(jì)一氣呵成,感覺上無拖沓生硬之處,最關(guān) 鍵的是我認(rèn)為這符合學(xué)生的基本認(rèn)知規(guī)律,是容易讓學(xué)生理解和接受的。
對(duì)于實(shí)際問題的選擇,我將4個(gè)問題整和于同一個(gè)實(shí)際背景下,這樣設(shè)計(jì)既能引起學(xué)生興趣,也盡量減少學(xué)生審題的時(shí)間,顯得非常有層次性,這些實(shí)際問題貫穿整個(gè)課堂的始終,使整個(gè)課堂有渾然天成的感覺。
對(duì)于練習(xí)的設(shè)計(jì),仍然采取了不重復(fù)的原則性,盡量做到每題針對(duì)一個(gè)問題,并進(jìn)行及時(shí)的小結(jié),也遵循了從開放到封閉的原則,達(dá)到了良好的效果。
對(duì)于最后討論題的設(shè)計(jì)和提出,是我在進(jìn)行了整個(gè)一章的單元備課后發(fā)現(xiàn),我們其實(shí)對(duì)二次函數(shù)的最值問題是不講的,但是不講并不代表一點(diǎn)都不會(huì)涉及到,其中用到的思想方法還是相當(dāng)重要的,在圖象的觀察中也具有了重要的地位,再加上這個(gè)問題在進(jìn)行了前面的實(shí)際問題的解答之后是呼之欲出的:多種樹——想提高產(chǎn)量——多種幾棵好呢?,所以我設(shè)計(jì)了這個(gè)探索性的問題:假如你是果園的主人,你準(zhǔn)備多種幾棵?注意這里我并沒有提出最大最小值的問題,但是所有的學(xué)生都能理解到,這是數(shù)學(xué)的魅力。這個(gè)問題的提出是整節(jié)課的一個(gè)高潮和精華,是學(xué)生學(xué)完二次函數(shù)定義之后,綜合利用函數(shù)的基本知識(shí),代數(shù)式的知識(shí)和一元二次方程的知識(shí)進(jìn)行的思考,因而他們的想法和說法,不論對(duì)錯(cuò),不論全面還是有所偏頗,其中都涉及到了重要的數(shù)學(xué)思想方法,而這些恰恰是非常重要的。事實(shí)證明學(xué)生的思維真的是非常活躍的,你要你給了足夠的空間,他們總能從各方各面進(jìn)行思考和解釋。
數(shù)學(xué)二次函數(shù)教學(xué)反思范文三
在二次函數(shù)教學(xué)中,根據(jù)它在初中數(shù)學(xué)函數(shù)在教學(xué)中的地位,細(xì)心地準(zhǔn)備《二次函數(shù)》的教學(xué),教學(xué)重點(diǎn)為二次函數(shù)的圖象性質(zhì)及應(yīng)用,教學(xué)難點(diǎn)為a、b、c與二次函數(shù)的圖象的關(guān)系。根據(jù)反思備課過程和講課效果,感受頗深,有收獲,也有不足。
本章的教學(xué)是我對(duì)選題有了進(jìn)一步認(rèn)識(shí),要體現(xiàn)教學(xué)目標(biāo),要有實(shí)際意義。要體現(xiàn)學(xué)生的“最近發(fā)展區(qū)”,有利于學(xué)生分析。如為了幫助學(xué)生建立二次函數(shù)的概念,從學(xué)生非常熟悉的正方形的面積的研究出發(fā),通過建立函數(shù)解析式,歸納解析式特點(diǎn),給出二次函數(shù)的定義.建立了二次函數(shù)概念后,再通過三個(gè)例題的分析和解決,促進(jìn)學(xué)生理解和建構(gòu)二次函數(shù)的概念,在建構(gòu)概念的過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程.體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
接下來教學(xué)主要從“拋物線的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)、增減性”循序漸進(jìn),由特殊到一般的學(xué)習(xí)二次函數(shù)的性質(zhì),并幫助學(xué)生總結(jié)性的去記憶。在學(xué)習(xí)過程中加強(qiáng)利用配方法將二次函數(shù)一般式化頂點(diǎn)式、判斷拋物線對(duì)稱軸、借圖象分析函數(shù)增減性等的訓(xùn)練。這部分內(nèi)容就是中等偏下的學(xué)生容易混淆,還需掌握方法,加強(qiáng)記憶,強(qiáng)調(diào)必須利用圖形去分析。通過教學(xué),讓學(xué)生對(duì)建模思想、圖形結(jié)合思想及分類討論思想都有了較清晰的認(rèn)識(shí),學(xué)會(huì)了分析問題的初步方法。
本章中二次函數(shù)上下左右的平移是我覺得上的比較成功的一部分,主要是借助多媒體,動(dòng)態(tài)的展示了二次函數(shù)的平移過程,讓學(xué)生自己總結(jié)規(guī)律,很形象,便于記憶。
二次函數(shù) 中含有三個(gè)字母系數(shù),因此確定其解析式要三個(gè)獨(dú)立的條件,用待定系數(shù)法來解.學(xué)習(xí)確定二次函數(shù)的一般式,即 的形式,這方面,學(xué)生的學(xué)習(xí)情況還是比較理想的,但方法沒有問題,計(jì)算能力還有待加強(qiáng)。
在學(xué)習(xí)了二次函數(shù)的知識(shí)后,我們嘗試運(yùn)用于解決三個(gè)實(shí)際問題.問題1是根據(jù)實(shí)際問題建立函數(shù)解析式并學(xué)習(xí)如何確定函數(shù)的定義域;問題二是根據(jù)二次函數(shù)的解析式,分析二次函數(shù)的性質(zhì),并通過畫函數(shù)圖像檢驗(yàn)作出的分析和判斷是否;問題三是綜合應(yīng)用一次函數(shù)、二次函數(shù)的知識(shí)確定函數(shù)的解析式和定義域,并嘗試解決銷售問題中最大利潤的問題;通過這三個(gè)問題的分析和解決,讓學(xué)生初步體會(huì)二次函數(shù)在實(shí)際生活中的運(yùn)用,再次感悟數(shù)學(xué)源于生活又服務(wù)于生活。雖然有部分學(xué)生尚不能熟練解決相關(guān)應(yīng)用問題,但在下面的學(xué)習(xí)中會(huì)得到補(bǔ)充和提高。
但在教學(xué)中,我自認(rèn)為熱情不夠,沒有積極調(diào)動(dòng)學(xué)生學(xué)習(xí)熱情的語言,感染力不足。今后備課時(shí)要重視創(chuàng)設(shè)豐富而風(fēng)趣的語言,來調(diào)動(dòng)學(xué)生的積極性。
總之,在數(shù)學(xué)教學(xué)中不但要善于設(shè)疑置難,而且要理論聯(lián)系實(shí)際,只有這樣,才會(huì)吸引學(xué)生對(duì)數(shù)學(xué)學(xué)科的熱愛。
數(shù)學(xué)二次函數(shù)教學(xué)反思 二次函數(shù)教學(xué)反思相關(guān)文章:
1.九年級(jí)數(shù)學(xué)二次函數(shù)的概念教學(xué)反思
2.九年級(jí)數(shù)學(xué)二次函數(shù)的應(yīng)用教學(xué)反思