怎么才能有效好初中數(shù)學幾何
初中數(shù)學的幾何內容越來越抽象,所以每遞進一次就會有一批同學因為不適應難度的提升而被淘汰。那么怎么才能有效學好初中數(shù)學幾何?以下是學習啦小編分享給大家的學好初中數(shù)學幾何的方法,希望可以幫到你!
學好初中數(shù)學幾何的方法
(一)對基礎知識的掌握一定要牢固,在這個基礎上我們才能談如何學好的問題。例如我們在證明相似的時候,如果利用兩邊對應成比例及其夾角相等的方法時,必須注意所找的角是兩邊的夾角,而不能是其它角。在回答圓的對稱軸時不能說是它的直徑,而必須說是直徑所在的直線。像這樣的細節(jié)我們必須在平時就要引起足夠的重視并且牢固掌握,只有這樣才是學好幾何的基礎。
(二)善于歸納總結,熟悉常見的特征圖形。舉個例子,已知A,B,C三點共線,分別以AB,BC為邊向外作等邊△ABD和等邊△BCE,如果再沒有其他附加條件,那么你能從這個圖形中找到哪些結論?
如果我們通過很多習題能夠總結出:一般情況下題目中如果有兩個有公共頂點的等邊三角形就必然會出現(xiàn)一對旋轉式的全等三角形的結論,這樣我們很容易得出△ABE≌△DBC,在這對全等三角形的基礎上我們還會得出△EMB≌△CNB,△MBN是等邊三角形,MN∥AC等主要結論,這些結論也會成為解決其它問題的橋梁。在幾何的學習中這樣典型的圖形很多,要善于總結。
(三)熟悉解題的常見著眼點,常用輔助線作法,把大問題細化成各個小問題,從而各個擊破,解決問題。在我們對一個問題還沒有切實的解決方法時,要善于捕捉可能會幫助你解決問題的著眼點。例如:在一個非直角三角形中出現(xiàn)了特殊的角,那你應該馬上想到作垂直構造直角三角形。因為特殊角只有在特殊形中才會發(fā)揮作用。再比如:在圓中出現(xiàn)了直徑,馬上就應該想到連出90°的圓周角。遇到梯形的計算或者證明問題時,首先我們心里必須清楚遇到梯形問題都有哪些輔助線可作,然后再具體問題具體分析。舉個例子說,如果題目中說到梯形的腰的中點,你想到了什么?你必須想到以下幾條:第一你必須想到梯形的中位線定理;第二你必須想到可以過一腰的中點平移另一腰;第三你必須想到可以連接一個頂點和腰的中點然后延長去構造全等三角形。只有這幾種可能用到的輔助線爛熟于心,我們才能很好的解決問題。其實很多時候我們只要抓住這些常見的著眼點,試著去做了,那么問題也就迎刃而解了。另外只要我們想到了,一定要肯于去嘗試,只有你去做了才可能成功。
(四)考慮問題全面也是學好幾何至關重要的一點。在幾何的學習中,經(jīng)常會遇到分兩種或多種情況來解的問題,那么我們怎么能更好的解決這部分問題呢?這要靠平時的點滴積累,對比較常見的分情況考慮的問題要熟悉。例如說到等腰三角形的角要考慮是頂角還是底角,說到等腰三角形的邊要考慮是底還是腰,說到過一點作直線和圓相交,要考慮點和圓有三種位置關系,所以要畫出三種圖形。這樣的情況在幾何的學習中是非常常見的,在這里不一一列舉,但大家在做題時一定要注意考慮到是否要分情況考慮。很多時候是你平常注意積累了,你心里有了這個問題,你做題時才會自然而然的想到。
學好初中數(shù)學幾何的建議
1、對基礎知識的掌握一定要牢固,在這個基礎上我們才能談如何學好的問題
例如我們在證明相似的時候,如果利用兩邊對應成比例及其夾角相等的方法時,必須注意所找的角是兩邊的夾角,而不能是其它角。在回答圓的對稱軸時不能說是它的直徑,而必須說是直徑所在的直線。像這樣的細節(jié)我們必須在平時就要引起足夠的重視并且牢固掌握,只有這樣才是學好幾何的基礎。
2、善于歸納總結,熟悉常見的特征圖形
舉個例子,已知A,B,C三點共線,分別以AB,BC為邊向外作等邊△ABD和等邊△BCE,如果再沒有其他附加條件,那么你能從這個圖形中找到哪些結論?
如果我們通過很多習題能夠總結出:一般情況下題目中如果有兩個有公共頂點的等邊三角形就必然會出現(xiàn)一對旋轉式的全等三角形的結論,這樣我們很容易得出△ABE≌△DBC,在這對全等三角形的基礎上我們還會得出△EMB≌△CNB,△MBN是等邊三角形,MN∥AC等主要結論,這些結論也會成為解決其它問題的橋梁。在幾何的學習中這樣典型的圖形很多,要善于總結。
3、熟悉解題的常見著眼點,常用輔助線作法
把大問題細化成各個小問題,從而各個擊破,解決問題。在我們對一個問題還沒有切實的解決方法時,要善于捕捉可能會幫助你解決問題的著眼點。例如:在一個非直角三角形中出現(xiàn)了特殊的角,那你應該馬上想到作垂直構造直角三角形。因為特殊角只有在特殊形中才會發(fā)揮作用。再比如:在圓中出現(xiàn)了直徑,馬上就應該想到連出90°的圓周角。遇到梯形的計算或者證明問題時,首先我們心里必須清楚遇到梯形問題都有哪些輔助線可作,然后再具體問題具體分析。
舉個例子說,如果題目中說到梯形的腰的中點,你想到了什么?你必須想到以下幾條:第一你必須想到梯形的中位線定理;第二你必須想到可以過一腰的中點平移另一腰;第三你必須想到可以連接一個頂點和腰的中點然后延長去構造全等三角形。只有這幾種可能用到的輔助線爛熟于心,我們才能很好的解決問題。其實很多時候我們只要抓住這些常見的著眼點,試著去做了,那么問題也就迎刃而解了。另外只要我們想到了,一定要肯于去嘗試,只有你去做了才可能成功。
學好初中幾何的關鍵點
第一、 正向思維和逆向思維結合。
繞題是很簡單的只要有了這個意識形態(tài)多寫幾個顯然的分析而已,而小學階段習慣思維零散的小孩做這類題很吃虧。
第二、 積累經(jīng)典的題和輔助線。
幾何不在于做題多而在于把經(jīng)典題,關鍵點在于把經(jīng)典題做熟,做透,吃透思路的形成過程。幾何不要指望什么時候都有靈感,三角法比代數(shù)法計算簡單,比純幾何更容易想到,平時要多練純幾何,但是真正考試的難題精彩的方法在單位時間你未必想得到,所以解決問題至關重要。
猜你喜歡: