八年級數(shù)學(xué)上冊教案
教案作為教師對課堂教學(xué)的一種預(yù)計和構(gòu)想,在教學(xué)中占有十分重要的地位。下面學(xué)習(xí)啦小編為你整理了八年級數(shù)學(xué)上冊教案,希望對你有幫助。
初二數(shù)學(xué)上冊教案:與三角形有關(guān)的線段
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.
2.內(nèi)容解析
三角形是一種最基本的幾何圖形,是認(rèn)識其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對三角形的有關(guān)知識有更為深刻的理解.
本節(jié)課的教學(xué)重點:三角形中的相關(guān)概念和三角形三邊關(guān)系.
本節(jié)課的教學(xué)難點:三角形的三邊關(guān)系.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)了解三角形中的相關(guān)概念,學(xué)會用符號語言表示三角形中的對應(yīng)元素.
(2)理解并且靈活應(yīng)用三角形三邊關(guān)系.
2.教學(xué)目標(biāo)解析
(1)結(jié)合具體圖形,識三角形的概念及其基本元素.
(2)會用符號、字母表示三角形中的相關(guān)元素,并會按邊對三角形進行分類.
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題.
三、教學(xué)問題診斷分析
在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.
四、教學(xué)過程設(shè)計
1.創(chuàng)設(shè)情境,提出問題
問題1 回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義.
師生活動:先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對三角形概念的理解.
設(shè)計意圖:三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對三角形概念的理解.
2.抽象概括,形成概念
動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義.
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
設(shè)計意圖:讓學(xué)生體會由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力.
補充說明:要求學(xué)生學(xué)會三角形、三角形的頂點、邊、角的概念以及幾何表達方法.
師生活動:結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會由文字語言向幾何語言的過渡.
設(shè)計意圖:進一步加深學(xué)生對三角形中相關(guān)元素的認(rèn)知,并進一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用.
3.概念辨析,應(yīng)用鞏固
如圖,不重復(fù),且不遺漏地識別所有三角形,并用符號語言表示出來.
(1)以AB為一邊的三角形有哪些?
(2)以∠D為一個內(nèi)角的三角形有哪些?
(3)以E為一個頂點的三角形有哪些?
(4)說出ΔBCD的三個角.
師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,加深學(xué)生對三角形中相關(guān)元素概念的理解.
4.拓廣延申,探究分類
我們知道,按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進行分類,又應(yīng)該如何分呢?小組之間同學(xué)進行交流并說說你們的想法.
師生活動:通過討論,學(xué)生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強化學(xué)生對三角形按邊分類的理解.
三角形按邊分類:
設(shè)計意圖:通過這一活動的設(shè)計,提高學(xué)生分類討論和歸納概括的能力,加深學(xué)生對三角形按邊分類的理解.
5.聯(lián)系實際,突破難點
情境引入:如圖三角形中,假設(shè)有一只小蟲要從點B出發(fā)沿著三角形的邊爬到點C,它有幾條路線可選擇?
各條路線的長一樣嗎?
師生活動:引導(dǎo)學(xué)生討論分析,得到兩條路線:
(1)B直接到C即BC;
(2)先由B到A再到C即BA+AC.
顯然,路線(1)中的BC要短一些,即:BC
最后,師生共同得到:
BC
即:三角形的兩邊之和大于第三邊.
設(shè)計意圖:根據(jù)“兩點之間線段最短”這一幾何公理,推理出三角形任意兩邊之和大于第三邊,讓學(xué)生親歷知識的形成過程,同時加深對 “三角形兩邊之和大于第三邊”的理解.
6. 應(yīng)用鞏固
例 用一條長為18cm的細(xì)繩圍成一個等腰三角形.
(1)如果腰長是底邊的2倍,那么各邊的長是多少?
(2)能圍成有一邊的長是4cm的等腰三角形嗎?為什么?
解:(1)設(shè)底邊長為xcm,則腰長為2xcm.
x+2x+2x=18.
解得x=3.6.
所以,三邊長分別為3.6cm,7.2cm,7.2cm.
(2)因為長為4的邊可能是腰,也可能是底邊,所以需要分情況討論.
如果4cm長的邊為底邊,設(shè)腰長為xcm,
則 4+2x=18
解得x=7.
如果4cm長的邊為腰,設(shè)底邊長為xcm,
則 2×4+x=18
解得x=10.
因為4+4<10,不符合三角形兩邊的和大于第三邊,所以不能圍成腰長是4的等腰三角形.
由以上討論可知,可以圍成底邊長是4cm的等腰三角形.
引導(dǎo)學(xué)生通過解決這樣的應(yīng)用問題,特別是(2)中思想方法,讓學(xué)生學(xué)會什么情況下要用到分類討論的思想,并通過問題的解答過程加深對三角形三邊關(guān)系理解.
設(shè)計意圖:設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用知識的能力,培養(yǎng)學(xué)生分類討論的數(shù)學(xué)思想,還能突破難點加深學(xué)生對三角形三邊關(guān)系的理解,一舉多得.
補充說明:應(yīng)用三角形的三邊關(guān)系時要靈活應(yīng)變,最簡潔的方法只需判斷兩小邊之和大于最大邊即可組成三角形.
師生活動:結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,活學(xué)活用.
7.總結(jié)反思
教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.
(1)三角形的定義?三角形的相關(guān)元素的概念(邊、頂點、角)?三角形的表示方法.
(2)三角形按邊的分類.
(3)三角形三邊之間的關(guān)系.
師生活動:教師引導(dǎo),學(xué)生小結(jié).
設(shè)計意圖:學(xué)生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學(xué)習(xí)重難點.
8.布置作業(yè):
教科書第8頁第1,2題.
初二數(shù)學(xué)上冊教案:乘法公式
教學(xué)設(shè)計思想
因為乘法公式實際上是整式乘法的特殊情況,因此,呈現(xiàn)方式是直接推演.所以本節(jié)教學(xué)過程以學(xué)生做自主活動為主線來組織,根據(jù)學(xué)生的探究情況補充講解.乘法公式有平方差公式和完全平方公式兩部分,本節(jié)課講解完全平方公式.
首先讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征.然后引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力.接著從幾何背景更為形象地認(rèn)識兩數(shù)和的平方公式,最后舉例分析如何正確使用完全平方公式,適時練習(xí)并總結(jié),從實踐到理論再回到實踐,以指導(dǎo)今后的解題.
教學(xué)目標(biāo)
知識與技能:
1.熟記完全平方公式,并能說出它的幾何背景
2.會運用公式進行簡單的乘法運算
3.提高進一步地掌握、靈活運用公式的能力
過程與方法:
1.經(jīng)歷對完全平方公式的探索和推導(dǎo),進一步發(fā)展符號(字母)的識別運用能力和推理能力
2.通過對公式的推導(dǎo)及理解,養(yǎng)成思維嚴(yán)密的習(xí)慣
情感態(tài)度價值觀:
感知數(shù)學(xué)公式的結(jié)構(gòu)美、和諧美,在靈活運用中體驗數(shù)學(xué)的樂趣
二、學(xué)法引導(dǎo)
1.教學(xué)方法:學(xué)生探索與老師講解相結(jié)合.
重點•難點及解決辦法
重點:會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算
難點:掌握完全平方公式的結(jié)構(gòu)特征,理解字母表示的廣泛含義.
課時安排
1課時.
教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
教學(xué)過程設(shè)計
看誰算得快
(1) (x+2)(x+2)
(2) (1+3a)(1+3a)
(3) (-x+5y)(-x+5y)
(4) (-m-n)(-m-n)
相乘的兩個多項式的項有什么特點?它們相乘的結(jié)果又有什么規(guī)律?
引例:計算 ,
學(xué)生活動:計算 , ,兩名學(xué)生板演,其他學(xué)生在練習(xí)本上完成,然后說出答案,得出公式.
或合并為:
教師引導(dǎo)學(xué)生用文字概括公式.
方法:由學(xué)生概括,教師給予肯定、否定或更正,同時板書.
兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍.
【教法說明】
看誰算得快部分,一是復(fù)習(xí)乘法公式,二是找規(guī)律,總結(jié)完全平方公式特征.
證明:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2
公式特征:
(1)積為二次三項式;
(2)積中兩項為兩數(shù)的平方和;
(3)另一項是兩數(shù)積的2倍,且與乘式中間的符號相同.
(4)公式中的字母a,b可以表示數(shù),單項式和多項式
1.首平方,尾平方,積的2倍放中央.
2.結(jié)合圖形,理解公式
根據(jù)圖形完成下列問題:
如圖:A、B兩圖均為正方形,
(1)圖A中正方形的面積為 ,(用代數(shù)式表示)
圖Ⅰ、Ⅱ、Ⅲ、Ⅳ的面積分別為 .
(2)圖B中,正方形的面積為 ,
?、蟮拿娣e為 ,
?、瘛ⅱ?、Ⅳ的面積和為 ,
用B、Ⅰ、Ⅱ、Ⅳ的面積表示Ⅲ的面積 .
分別得出結(jié)論:
學(xué)生活動:在教師引導(dǎo)下回答問題.
【教法說明】利用圖形講解,增強學(xué)生對公式的直觀理解,以便更好地掌握公式,同時也培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想.
3.例題
(1)引例:計算
教師講解:在 中,把x看成a,把3y看成b,則 就可用完全平方公式來計算,即
【教法說明】 引例的目的在于使學(xué)生進一步理解公式的結(jié)構(gòu),為運用公式打好基礎(chǔ).
(2)例2 運用完全平方公式計算:(2) ;(3)
學(xué)生活動:學(xué)生獨立在練習(xí)本上嘗試解題,2個學(xué)生板演.
【教法說明】 讓學(xué)生先模仿公式解題,學(xué)生可能會出現(xiàn)一些問題,這也正是學(xué)生對公式理解、應(yīng)用和熟練程度上存在的需要解決的問題,反饋后要緊扣公式,重點講解,達到解決問題的目的,關(guān)于例2中(3)的計算,可對照公式直接計算,也可變形成 ,然后再進行計算,同時也可訓(xùn)練學(xué)生靈活運用學(xué)過的知識的能力.
(3)(補充)例3 你覺得怎樣做簡單:
?、?102²
?、?99²
思考
(a+b)²與(-a-b)²相等嗎?
(a-b)²與(b-a)²相等嗎?
(a-b)²與a²-b²相等嗎?
為什么?
4.嘗試反饋,鞏固知識
練習(xí)一(P90)
學(xué)生活動:學(xué)生在練習(xí)本上完成,然后同學(xué)互評,教師抽看結(jié)果,練習(xí)中存在的共性問題要集中解決.
5.變式訓(xùn)練,培養(yǎng)能力
練習(xí)二
運用完全平方公式計算:
(l) (2) (3) (4)
學(xué)生活動:學(xué)生分組討論,選代表解答.
練習(xí)三
(1)有甲、乙、丙、丁四名同學(xué),共同計算,以下是他們的計算過程,請判斷他們的計算是否正確,不正確的請指出錯在哪里.
甲的計算過程是:原式
乙的計算過程是:原式
丙的計算過程是:原式
丁的計算過程是:原式
(2)想一想, 與 相等嗎?為什么?
與 相等嗎?為什么?
學(xué)生活動:觀察、思考后,回答問題.
【教法說明】 練習(xí)二是一組數(shù)字計算題,使學(xué)生體會到公式的用途,也可以激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,同時也起到加深理解公式的作用.練習(xí)三第(l)題實際是課本例4,此題是與平方差公式的綜合運用,難度較大.通過給出解題步驟,讓學(xué)生進行判斷,使難度降低,學(xué)生易于理解,教師要注意引導(dǎo)學(xué)生分析這類題的結(jié)構(gòu)特征,掌握解題方法.通過完成第(2)題使學(xué)生進一步理解 與 之間的相等關(guān)系,同時加深理解代數(shù)中“a”具有的廣泛意義.
7. 總結(jié)、擴展
?、艑W(xué)習(xí)了完全平方公式.
?、埔龑?dǎo)學(xué)生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運用公式時應(yīng)該注意的問題.
8.布置作業(yè)
P91 A組 1,4,5
猜你感興趣: