北師大六年級下數(shù)學(xué)教案
北師大六年級下數(shù)學(xué)教案
六年級是學(xué)生對六年學(xué)習(xí)的一個總結(jié),同時又是學(xué)生進入中學(xué)的一個過渡。怎樣提高學(xué)生在這一階段學(xué)習(xí)好數(shù)學(xué)呢?下面學(xué)習(xí)啦小編為你整理了北師大六年級下冊數(shù)學(xué)教案,希望對你有幫助。
六年級下數(shù)學(xué)教案:圓柱的體積
教學(xué)目標:
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點:
掌握圓柱體積的計算公式。
教學(xué)難點:
圓柱體積的計算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運用轉(zhuǎn)化的思想同學(xué)們猜猜會轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計算公式的推導(dǎo)。
(1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)
(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
反復(fù)播放這個過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
(3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
六年級下數(shù)學(xué)教案:圓柱的認識
教學(xué)目標:
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點:
掌握圓柱體積的計算公式。
教學(xué)難點:
圓柱體積的計算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運用轉(zhuǎn)化的思想同學(xué)們猜猜會轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計算公式的推導(dǎo)。
(1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)
(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
反復(fù)播放這個過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
(3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
六年級下數(shù)學(xué)教案:負數(shù)
教學(xué)目標:
1、知識與技能:使學(xué)生在現(xiàn)實情境中初步認識負數(shù),了解負數(shù)的作用,感受運用負數(shù)的需要和方便。
2、過程與方法:使學(xué)生知道正數(shù)和負數(shù)的讀法和寫法,知道0既不是正數(shù),又不是負數(shù)。正數(shù)都大于0,負數(shù)都小于0。
3、情感態(tài)度與價值觀:使學(xué)生體驗數(shù)學(xué)和生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的能力。
教學(xué)重點:
初步認識正數(shù)和負數(shù)以及讀法和寫法。
教學(xué)難點:
理解0既不是正數(shù),也不是負數(shù)。
教具學(xué)具:
溫度計、練習(xí)紙。
教學(xué)過程:
一、游戲?qū)?感受生活中的相反現(xiàn)象)
1、游戲:我們來玩?zhèn)€游戲輕松一下,游戲叫做《我反 我反 我反反反》。游戲規(guī)則:老師說一句話,請你說出與它相反意思的話。
①向上看(向下看)
?、谙蚯白?00米(向后走200米)
?、垭娞萆仙?5層(下降15層)。
2、下面我們來難度大些的,看誰反應(yīng)最快。
①我在銀行存入了500元(取出了500元)。
②知識競賽中,五(1)班得了20分(扣了20分)。
③10月份,學(xué)校小賣部賺了500元。(虧了500元)。
?、芰闵?0攝氏度(零下10攝氏度)。
3、談話:老師的一位朋友喜歡旅游, 11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準備。下面就請大家一起和我走進天氣預(yù)報。(天氣預(yù)報片頭)
例1
1、認識溫度計,理解用正負數(shù)來表示零上和零下的溫度。
看教材:首先來看一下南京的氣溫。
這里有個溫度計。我們先來認識溫度計,請大家仔細觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢?
現(xiàn)在你能看出南京是多少攝氏度嗎? (是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。
上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的呢?(在零刻度線以上四格)
指出:上海的氣溫比0℃要高,是零上4攝氏度。
了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的0℃比起來,又怎樣了呢?(比南京的0℃要低)你能用一個手勢來表示它和0℃的關(guān)系嗎?(對,北京的氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎?
比較:現(xiàn)在我們已經(jīng)知道了這三個地方的最低氣溫。仔細觀察上海和北京的最低氣溫,它們一樣嗎?(不一樣,一個在0℃以上,一個在0℃以下)。
?、偕虾5臍鉁乇?℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個 4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學(xué)們所說的4℃也就是+4℃。(板書)
?、诒本┑臍鉁乇?℃低,是零下4攝氏度。我們可以用-4℃來表示零下4攝式度(板書-4)。跟老師一起來讀一下。寫的時候可以先寫一個負號(指出是負號不是減號)再寫一個4就可以了,同桌互相比劃一下。
小結(jié):通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數(shù)可以來表示零上溫度,用-4這樣的數(shù)可以表示零下溫度。
2、試一試:學(xué)生看溫度計,寫出各地的溫度,并讀一讀。
3、聽一段中央臺的天氣預(yù)報,將你聽到城市的最低和最高溫度記錄下來。
4、小結(jié):通過剛才的學(xué)習(xí),我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負幾來表示。
三、學(xué)習(xí)珠峰、吐魯番盆地的海拔表達方法(P4第2題)
1、同學(xué)們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關(guān)的。最近經(jīng)國家測繪局公布了珠峰的最新海拔高度。
2、我們觀察課本上珠穆朗瑪峰的海拔圖,從圖上,你看懂了些什么?
3、我們再來看x疆的吐魯番盆地的海拔圖。你又能從圖上看懂些什么呢?(引導(dǎo)學(xué)生交流,回答珠穆朗瑪峰比海平面高8844.43米;吐魯番盆地比海平面低155米)。
4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎?
(1)交流:珠穆朗瑪峰的海拔可以記作:+8844.43米或8844.43米。吐魯番盆地的海拔可以記作:-155米。(板書)
(2)小結(jié):以海平面為界線,+8844.43米或8844.43米這樣的數(shù)可以表示海平。
面以上的高度,-155米這樣的數(shù)可以表示海平面以下的高度。
四、小組討論,歸納正數(shù)和負數(shù)。
1、通過剛才的學(xué)習(xí),我們收集到了一些數(shù)據(jù),我們可以用這些數(shù)來表示零上溫度和零下溫度,還可以表示海平面以上的高度和海平面以下的高度。那么你們觀察一下這些數(shù),它們一樣嗎?你們想幫它們分分類嗎?
2、學(xué)生交流、討論。
3、指出:因為+8844.43也可以寫成8844.43米,所以有正號和沒正號都可以歸于一類。提出疑問:0到底歸于哪一類?(引導(dǎo)學(xué)生爭論,各自發(fā)表意見)
?、偃绻纪夥秩惖模蠋熆梢猿鲭y題:我覺得0可以分在4它們一類啊,你們怎么來說服我?
②如果有學(xué)生發(fā)表分三類的,有的分兩類的,可以引導(dǎo)他們互相爭論。
4、小結(jié):我們從溫度計上觀察,以0℃為界限線,0℃以上的溫度用正幾表示,0℃以下的溫度用負幾表示。同樣,以海平面為界線,高于海平面的高度我們用正幾來表示,低于海平面我們用負幾表示。0就象一條分界線,把正數(shù)和負數(shù)分開了,它誰都不屬于。但對于正數(shù)和負數(shù)來說,它卻必不可少。我們把象+4、 4、+8844.43等這樣的數(shù)叫做正數(shù);象-4、-155等這樣的數(shù)我們叫做負數(shù);而0既不是正數(shù),也不是負數(shù)。(板書)正數(shù)都大于0,負數(shù)都小于0。這節(jié)課我們就和大家一起來認識正數(shù)和負數(shù)。(板書:認識正數(shù)和負數(shù))
五、聯(lián)系生活,鞏固練習(xí)
1、練習(xí)一第2、3題
2、你知道嗎:水沸騰時的溫度是____。 水結(jié)冰時的溫度是____。 地球表面的最低溫度是
3、討論生活中的正數(shù)和負數(shù)
(1)存折:這里的-800表示什么意思?(以原來的錢為標準,取出了800元記作-800;存入了1200元記作1200元,還可以記作+1200元)
(2)電梯:這里的1和-1表示什么意思?(以地平面為界線,地平面以上一層我們用1或+1來表示,-1就表示地下一層)。老師現(xiàn)在要到33層應(yīng)該按幾啊?要到地下3層呢?
六、課堂小結(jié)
這節(jié)課我們一起認識了正數(shù)和負數(shù)。在我們的生活中,零攝式度以上和零攝式度以下,海平面以上和海平面以下,得分與失分等都具有相反的意義,我們都可以用正數(shù)和負數(shù)來表示。
七、布置作業(yè)
《家庭作業(yè)》第1頁的練習(xí)。
猜你感興趣: