特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦>學習方法>教學方法>

八年級下冊人教版數(shù)學教案

時間: 威敏1027 分享

  在人類歷史發(fā)展和社會生活中,數(shù)學也發(fā)揮著不可替代的作用,也是學習和研究現(xiàn)代科學技術必不可少的基本工具。八年級數(shù)學在中考的占的分數(shù)比例不用多說,下面學習啦小編為你整理了八年級下冊人教版數(shù)學教案,希望對你有幫助。

  初二下冊人教版數(shù)學教案:函數(shù)

  教學目標:

  (1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

  (2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣

  重點難點:

  能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

  教學過程:

  一、試一試

  1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結(jié)果填寫在下表的空格中,

  AB長x(m)123456789

  BC長(m) 12

  面積y(m2) 48

  2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個函數(shù)的關系式,

  對于1.,可讓學生根據(jù)表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發(fā)表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。

  對于2,可讓學生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0

  對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0

  二、提出問題

  某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大?

  在這個問題中,可提出如下問題供學生思考并回答:

  1.商品的利潤與售價、進價以及銷售量之間有什么關系?

  [利潤=(售價-進價)×銷售量]

  2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

  [x的值不能任意取,其范圍是0≤x≤2]

  5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  將函數(shù)關系式y(tǒng)=x(20-2x)(0

  y=-2x2+20x (0

  將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:

  y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、觀察;概括

  1.教師引導學生觀察函數(shù)關系式(1)和(2),提出以下問題讓學生思考回答;

  (1)函數(shù)關系式(1)和(2)的自變量各有幾個?

  (各有1個)

  (2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?

  (分別是二次多項式)

  (3)函數(shù)關系式(1)和(2)有什么共同特點?

  (都是用自變量的二次多項式來表示的)

  (4)本章導圖中的問題以及P1頁的問題2有什么共同特點?

  讓學生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。

  2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

  四、課堂練習

  1.(口答)下列函數(shù)中,哪些是二次函數(shù)?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3練習第1,2題。

  五、小結(jié)

  1.請敘述二次函數(shù)的定義.

  2,許多實際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應用題,并寫出函數(shù)關系式。

  六、作業(yè):略

  初二下冊人教版數(shù)學教案:二次根式

  一、教學目標

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應用;

  4.通過二次根式的計算培養(yǎng)學生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學美.

  二、教學重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學方法

  啟發(fā)式、講練結(jié)合.

  四、教學過程

  (一)復習提問

  1.什么叫平方根、算術平方根?

  2.說出下列各式的意義,并計算:

  , , , , , , ,

  通過練習使學生進一步理解平方根、算術平方根的概念.

  觀察上面幾個式子的特點,引導學生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  , , , 表示的是算術平方根.

  (二)引入新課

  我們已遇到的 , , ,這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學們討論論應注意的問題,引導學生總結(jié):

  (1)式子 只有在條件a≥0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”.請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學生分析、回答.

  例1 當a為實數(shù)時,下列各式中哪些是二次根式?

  分析: 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a<-10時,a+10<0;又如當0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.

  例3 當字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時, 是二次根式.

  (2)-3x≥0,x≤0,即x≤0時, 是二次根式.

  (3) ,且x≠0,∴x>0,當x>0時, 是二次根式.

  (4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.當x>2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+3≥0,得 .

  (2)由 ,得3a-1>0,解得 .

  (3)由于x取任何實數(shù)時都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導學生做出本節(jié)課學習內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術平方根的表達式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習和作業(yè)

  練習:

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x<0時,又如當x<-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材p.172習題11.1;a組1;b組1.

  六、板書設計

  初二下冊人教版數(shù)學教案:數(shù)據(jù)的波動程度

  教學目標

  1、了解方差的定義和計算公式。

  2. 理解方差概念的產(chǎn)生和形成的過程。

  3. 會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

  過程與方法   經(jīng)歷探索極差、方差的應用過程,體會數(shù)據(jù)波動中的極差、方差的求法時以及區(qū)別,積累統(tǒng)計經(jīng)驗。

  情感態(tài)度與價值觀   培養(yǎng)學生的統(tǒng)計意識,形成尊重事實、用數(shù)據(jù)說話的態(tài)度,認識數(shù)據(jù)處理的實際意義。

  重點 方差產(chǎn)生的必要性和應用方差公式解決實際問題。掌握其求法,

  難點 理解方差公式,應用方差對數(shù)據(jù)波動情況的比較、判斷。

  教學過程

  備 注 教學設計 與 師生互動

  第一步:情景創(chuàng)設

  乒乓球的標準直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對這些乒乓球的直徑了進行檢測。結(jié)果如下(單位:mm):

  A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

  B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

  你認為哪廠生產(chǎn)的乒乓球的直徑與標準的誤差更小呢?

  請你算一算它們的平均數(shù)和極差。

  是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標準?

  今天我們一起來探索這個問題。

  探索活動

  通過計算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個極值之間的大小情況,而對其他數(shù)據(jù)的波動情況不敏感。讓我們一起來做下列的數(shù)學活動

  算一算

  把所有差相加,把所有差取絕對值相加,把這些差的平方相加。

  想一想

  你認為哪種方法更能明顯反映數(shù)據(jù)的波動情況?

  第二步:講授新知:

  (一)方差

  定義:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用

  來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。

  意義:用來衡量一批數(shù)據(jù)的波動大小

  在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大, 越不穩(wěn)定

  歸納:(1)研究離散程度可用

  (2)方差應用更廣泛衡量一組數(shù)據(jù)的波動大小

  (3)方差主要應用在平均數(shù)相等或接近時

  (4)方差大波動大,方差小波動小,一般選波動小的

  方差的簡便公式:

  推導:以3個數(shù)為例

  (二)標準差:

  方差的算術平方根,即④

  并把它叫做這組數(shù)據(jù)的標準差.它也是一個用來衡量一組數(shù)據(jù)的波動大小的重要的量.

  注意:波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

  第三步:解例分析:

  例1 填空題;

  (1)一組數(shù)據(jù):,,0,,1的平均數(shù)是0,則= .方差 .

  (2)如果樣本方差,

  那么這個樣本的平均數(shù)為 .樣本容量為 .

  (3)已知的平均數(shù)10,方差3,則的平均數(shù)為 ,方差為 .

  例2 選擇題:

  (1)樣本方差的作用是( )

  A、估計總體的平均水平 B、表示樣本的平均水平

  C、表示總體的波動大小 D、表示樣本的波動大小,從而估計總體的波動大小

  (2)一個樣本的方差是0,若中位數(shù)是,那么它的平均數(shù)是( )

  A、等于 B、不等于 C、大于 D、小于

  (3)已知樣本數(shù)據(jù)101,98,102,100,99,則這個樣本的標準差是( )

  A、0 B、1 C、 D、2

  (4)如果給定數(shù)組中每一個數(shù)都減去同一非零常數(shù),則數(shù)據(jù)的( )

  A、平均數(shù)改變,方差不變 B、平均數(shù)改變,方差改變

  C、平均數(shù)不變,方差不變 A、平均數(shù)不變,方差改變

  例3 為了考察甲、乙兩種農(nóng)作物的長勢,分別從中抽取了10株苗,測得苗高如下:(單位:mm) 甲:9,10,11,12,7,13,10,8,12,8

  乙:8,13,12,11,10,12,7,7,9,11

  請你經(jīng)過計算后回答如下問題:

  (1)哪種農(nóng)作物的10株苗長的比較高?

  (2)哪種農(nóng)作物的10株苗長的比較整齊?

  P154例1

  分析應注意的問題:題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

  在求方差之前先要求哪個統(tǒng)計量,為什么?學生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。

  方差怎樣去體現(xiàn)波動大小?

  這一問題的提出主要復習鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

  第四步:隨堂練習:

  1. 從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  問:(1)哪種農(nóng)作物的苗長的比較高?

  (2)哪種農(nóng)作物的苗長得比較整齊?

  2. 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績?nèi)缦卤硭?,誰的成績比較穩(wěn)定?為什么?

  測試次數(shù) 1 2 3 4 5

  段巍 13 14 13 12 13

  金志強 10 13 16 14 12

  參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

  2.段巍的成績比金志強的成績要穩(wěn)定。

  第五步;課后練習:

  1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。

  2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定 去參加比賽。

  3. 甲、乙兩臺機床生產(chǎn)同種零件,10天出的次品分別是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機床的性能較好?

  小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

  答案:1. 6 2. >、乙;

  3. =1.5、S=0.975、=1. 5、S=0.425,乙機床性能好

  4. =10.9、S=0.02; =10.9、S=0.008

  選擇小兵參加比賽。

  小結(jié) 與 課后反思:
猜你感興趣:

1.人教版八年級數(shù)學下冊教學設計

2.八年級下冊數(shù)學教案 人教版

3.八年級下冊數(shù)學人教版教案

4.2016人教版八年級下冊數(shù)學教學計劃

5.人教版八年級下學期數(shù)學教案部分教案

6.2017八年級下冊數(shù)學教學設計

2985359