小學(xué)應(yīng)用題經(jīng)典例題及解題方法(2)
小學(xué)應(yīng)用題經(jīng)典例題及解題方法總結(jié)二
26. 把一根木料鋸成3段需要9分鐘,那么用同樣的速度把這根木料鋸成5段,需要多少分?
解題思路:
把一根木料鋸成3段,只鋸出了(3-1)個鋸口,這樣就可以求出鋸出每個鋸口所需要的時間,進(jìn)一步即可以求出鋸成5段所需的時間。
答題:
解:9÷(3-1)×(5-1)=18(分)
答:鋸成5段需要18分鐘。
27. 一個車間,女工比男工少35人,男、女工各調(diào)出17人后,男工人數(shù)是女工人數(shù)的2倍。原有男工多少人?女工多少人?
解題思路:
女工比男工少35人,男、女工各調(diào)出17人后,女工仍比男工少35人。這時男工人數(shù)是女工人數(shù)的2倍,也就是說少的35人是女工人數(shù)的(2-1)倍。這樣就可求出現(xiàn)在女工多少人,然后再分別求出男、女工原來各多少人。
答題:
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
28. 李強(qiáng)騎自行車從甲地到乙地,每小時行12千米,5小時到達(dá),從乙地返回甲地時因逆風(fēng)多用1小時,返回時平均每小時行多少千米?
解題思路:
由每小時行12千米,5小時到達(dá)可求出兩地的路程,即返回時所行的路程。由去時5小時到達(dá)和返回時多用1小時,可求出返回時所用時間。
答題:
解:12×5÷(5+1)=10(千米)
答:返回時平均每小時行10千米。
29. 甲、乙二人同時從相距18千米的兩地相對而行,甲每小時行走5千米,乙每小時走4千米。如果甲帶了一只狗與甲同時出發(fā),狗以每小時8千米的速度向乙跑去,遇到乙立即回頭向甲跑去,遇到甲又回頭向飛跑去,這樣二人相遇時,狗跑了多少千米?
解題思路:
由題意知,狗跑的時間正好是二人的相遇時間,又知狗的速度,這樣就可求出狗跑了多少千米。
答題:
解:18÷(5+4)=2(小時)
8×2=16(千米)
答:狗跑了16千米。
30. 有紅、黃、白三種顏色的球,紅球和黃球一共有21個,黃球和白球一共有20個,紅球和白球一共有19個。三種球各有多少個?
解題思路:
由條件知,(21+20+19)表示三種球總個數(shù)的2倍,由此可求出三種球的總個數(shù),再根據(jù)題目中的條件就可以求出三種球各多少個。
答題:
解:總個數(shù):
(21+20+19)÷2=30(個)
白球:30-21=9(個)
紅球:30-20=10(個)
黃球:30-19=11(個)
答:白球有9個,紅球有10個,黃球有11個。
31. 在一根粗鋼管上接細(xì)鋼管。如果接2根細(xì)鋼管共長18米,如果接5根細(xì)鋼管共長33米。一根粗鋼管和一根細(xì)鋼管各長多少米?
解題思路:
根據(jù)題意,33米比18米長的米數(shù)正好是3根細(xì)鋼管的長度,由此可求出一根細(xì)鋼管的長度,然后求一根粗鋼管的長度。
答題:
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗鋼管長8米,一根細(xì)鋼管長5米。
32. 水泥廠原計(jì)劃12天完成一項(xiàng)任務(wù),由于每天多生產(chǎn)水泥4.8噸,結(jié)果10天就完成了任務(wù),原計(jì)劃每天生產(chǎn)水泥多少噸?
解題思路:
由題意知,實(shí)際10天比原計(jì)劃10天多生產(chǎn)水泥(4.8×10)噸,而多生產(chǎn)的這些水泥按原計(jì)劃還需用(12-10)天才能完成,也就是說原計(jì)劃(12-10)天能生產(chǎn)水泥(4.8×10)噸。
答題:
解:4.8×10÷(12-10)=24(噸)
答:原計(jì)劃每天生產(chǎn)水泥24噸。
33. 學(xué)校舉辦歌舞晚會,共有80人參加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
解題思路:
由題意知,實(shí)際10天比原計(jì)劃10天多生產(chǎn)水泥(4.8×10)噸,而多生產(chǎn)的這些水泥按原計(jì)劃還需用(12-10)天才能完成,也就是說原計(jì)劃(12-10)天能生產(chǎn)水泥(4.8×10)噸。
答題:
解:4.8×10÷(12-10)=24(噸)
答:原計(jì)劃每天生產(chǎn)水泥24噸。
34. 學(xué)校舉辦語文、數(shù)學(xué)雙科競賽,三年級一班有59人,參加語文競賽的有36人,參加數(shù)學(xué)競賽的有38人,一科也沒參加的有5人。雙科都參加的有多少人?
解題思路:
參加語文競賽的36人中有參加數(shù)學(xué)競賽的,同樣參加數(shù)學(xué)競賽的38人中也有參加語 文競賽的,如果把兩者加起來,那么既參加語文競賽又參加數(shù)學(xué)競賽的人數(shù)就統(tǒng)計(jì)了兩次,所以將參加語文競賽的人數(shù)加上參加數(shù)學(xué)競賽的人數(shù)再加上一科也沒參加 的人數(shù)減去全班人數(shù)就是雙科都參加的人數(shù)。
答題:
解:36+38+5-59=20(人)
答:雙科都參加的有20人。
35. 學(xué)校買了4張桌子和6把椅子,共用640元。2張桌子和5把椅子的價(jià)錢相等,桌子和椅子的單價(jià)各是多少元?
解題思路:
由“2張桌子和5把椅子的價(jià)錢相等”這一條件,可以推出4張桌子就相當(dāng)于10把椅子的價(jià)錢,買4張桌子和6把椅子共用640元,也就相當(dāng)于買16把椅子共用640元。
答題:
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的單價(jià)分別是100元、40元。
36. 父親今年45歲,5年前父親的年齡是兒子的4倍,今年兒子多少歲?
解題思路:
5年前父親的年齡是(45-5)歲,兒子的年齡是(45-5)÷4歲,再加上5就是今年兒子的年齡。
答題:
解:(45-5)÷4+5 =10+5 =15(歲)
答:今年兒子15歲。
37. 有兩桶油,甲桶油重是乙桶油重的4倍,如果從甲桶倒入乙桶18千克,兩桶油就一樣重,原來每桶各有多少千克油?
解題思路:
“如果從甲桶倒入乙桶18千克,兩桶油就一樣重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
答題:
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原來甲桶有油48千克,乙桶有油12千克。
38. 光明小學(xué)舉辦數(shù)學(xué)知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?
解題思路:
根據(jù)題意,20題全部答對得100分,答錯一題將失去(5+3)分,而不答僅失去5分。小麗共失去(100-79)分。再根據(jù)(100-79)÷8=2(題)……5(分),分析答對、答錯和沒答的題數(shù)。
答題:
解:(5×20-75)÷8=2(題)……5(分)
20-2-1=17(題)
答:答對17題,答錯2題,有1題沒答。
39. 光明小學(xué)舉辦數(shù)學(xué)知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?
解題思路:
“從兩車頭相遇到兩車尾相離”,兩車所行的路程是兩車身長之和,即(240+264)米,速度之和為(20+16)米。根據(jù)路程、速度和時間的關(guān)系,就可求得所需時間。
答題:
解:(240+264)÷(20+16)=504÷30 =14(秒)
答:從兩車頭相遇到兩車尾相離,需要14秒。
40. 一列火車長600米,通過一條長1150米的隧道,已知火車的速度是每分700米,問火車通過隧道需要幾分?
解題思路:
火車通過隧道是指從車頭進(jìn)入隧道到車尾離開隧道,所行的路程正好是車身與隧道長度之和。
答題:
解:(600+1150)÷700 =1750÷700 =2.5(分)
答:火車通過隧道需2.5分。
41.小明從家里到學(xué)校,如果每分走50米,則正好到上課時間;如果每分走60米,則離上課時間還有2分。問小明從家里到學(xué)校有多遠(yuǎn)?
解題思路:
在每分走50米的到校時間內(nèi)按兩種速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,這就可求出小明按每分50米的到校時間。
答題:
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明從家里到學(xué)校是600米。
42.有一周長600米的環(huán)形跑道,甲、乙二人同時、同地、同向而行,甲每分鐘跑300米,乙每分鐘跑400米,經(jīng)過幾分鐘二人第一次相遇?
解題思路:
由已知條件可知,二人第一次相遇時,乙比甲多跑一周,即600米,又知乙每分鐘比甲多跑(400-300)米,即可求第一次相遇時經(jīng)過的時間。
答題:
解:600÷(400-300)=600÷100 =6(分)
答:經(jīng)過6分鐘兩人第一次相遇
43.有一個長方形紙板,如果只把長增加2厘米,面積就增加8平方米;如果只把寬增加2厘米,面積就增加12平方厘米。這個長方形紙板原來的面積是多少?
解題思路:
由“只把寬增加2厘米,面積就增加12平方厘米”,可求出原來的長是:(12÷2)厘米,同理原來的寬就是(8÷2)厘米,求出長和寬,就能求出原來的面積。
答題:
解:(12÷2)×(8÷2)=24(平方厘米)
答:這個長方形紙板原來的面積是24平方厘米。
44.媽媽買蘋果和梨各3千克,付出20元找回7.4元。每千克蘋果2.4元,每千克梨多少元?
解題思路:
用去的錢數(shù)除以3就是1千克蘋果和1千克梨的總錢數(shù)。從這個總錢數(shù)里去掉1千克蘋果的錢數(shù),就是每千克梨的錢數(shù)。
答題:
解:(20-7.4)÷3-2.4 =12.6÷3-2.4 =4.2-2.4 =1.8(元)
答:每千克梨1.8元。
45.甲乙兩人同時從相距135千米的兩地相對而行,經(jīng)過3小時相遇。甲的速度是乙的2倍,甲乙兩人每小時各行多少千米?
解題思路:
由題意知,甲乙速度和是(135÷3)千米,這個速度和是乙的速度的(2+1)倍。
答題:
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小時分別行30千米、15千米。
46.盒子里有同樣數(shù)目的黑球和白球。每次取出8個黑球和5個白球,取出幾次以后,黑球沒有了,白球還剩12個。一共取了幾次?盒子里共有多少個球?
解題思路:
兩種球的數(shù)目相等,黑球取完時,白球還剩12個,說明黑球多取了12個,而每次多取(8-5)個,可求出一共取了幾次。
答題:
解:12÷(8-5)=4(次)
8×4+5×4+12=64(個)
或8×4×2=64(個)
答:一共取了4次,盒子里共有64個球。
47.上午6時從汽車站同時發(fā)出1路和2路公共汽車,1路車每隔12分鐘發(fā)一次,2路車每隔18分鐘發(fā)一次,求下次同時發(fā)車時間。
解題思路:
1路和2路下次同時發(fā)車時,所經(jīng)過的時間必須既是12分的倍數(shù),又是18分的倍數(shù)。也就是它們的最小公倍數(shù)。
答題:
解:12和18的最小公倍數(shù)是36
6時+36分=6時36分
答:下次同時發(fā)車時間是上午6時36分。
48.父親今年45歲,兒子今年15歲,多少年前父親的年齡是兒子年齡的11倍?
解題思路:
父、子年齡的差是(45-15)歲,當(dāng)父親的年齡是兒子年齡的11倍時,這個差正好是兒子年齡的(11-1)倍,由此可求出兒子多少歲時,父親是兒子年齡的11倍。又知今年兒子15歲,兩個歲數(shù)的差就是所求的問題。
答題:
解:(45-15)÷(11-1)=3(歲)
15-3=12(年)
答:12年前父親的年齡是兒子年齡的11倍。
49.王老師有一盒鉛筆,如平均分給2名同學(xué)余1支,平均分給3名同學(xué)余2支,平均分給4名同學(xué)余3支,平均分給5名同學(xué)余4支。問這盒鉛筆最少有多少支?
解題思路:
根據(jù)題意,可以將題中的條件轉(zhuǎn)化為:平均分給2名同學(xué)、3名同學(xué)、4名同學(xué)、5名同學(xué)都少一支,因此,求出2、3、4、5的最小公倍數(shù)再減去1就是要求的問題。
答題:
解:2、3、4、5的最小公倍數(shù)是60
60-1=59(支)
答:這盒鉛筆最少有59支。
50. 一塊平行四邊形地,如果只把底增加8米,或只把高增加5米,它的面積都增加40平方米。求這塊平行四邊形地原來的面積?
解題思路:
根據(jù)只把底增加8米,面積就增加40平方米,?可求出原來平行四邊形的高。根據(jù)只把高增加5米,面積就增加40平方米,可求出原來平行四邊形的底。再用原來的底乘以原來的高就是要求的面積。
答題:
解:(40÷5)×(40÷8)=40(平方米)
答:平行四邊形地原來的面積是40平方米。
看過"小學(xué)應(yīng)用題經(jīng)典例題及解題方法 "的還看了: