初中數(shù)學(xué)考試重點(diǎn)知識(shí)歸納
其實(shí)學(xué)習(xí)初中數(shù)學(xué)最簡(jiǎn)單的方法就是對(duì)所學(xué)的知識(shí)點(diǎn)進(jìn)行歸納總結(jié),但是很少有同學(xué)可以做到,為了幫助大家更好的學(xué)習(xí)數(shù)學(xué),小編給大家整理了初中數(shù)學(xué)考試重點(diǎn)知識(shí),一起看看吧。
初中數(shù)學(xué)考試重點(diǎn)知識(shí)
一、:代數(shù)初步知識(shí)。
1.代數(shù)式:用運(yùn)算符號(hào)“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱(chēng)為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實(shí)際生活或生產(chǎn)有意義;單獨(dú)一個(gè)數(shù)或一個(gè)字母也是代數(shù)式)
2.列代數(shù)式的幾個(gè)注意事項(xiàng):
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“·”乘,或省略不寫(xiě);
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“·”乘,也不能省略乘號(hào);
(3)數(shù)與字母相乘時(shí),一般在結(jié)果中把數(shù)寫(xiě)在字母前面,如a×5應(yīng)寫(xiě)成5a;
(4)帶分?jǐn)?shù)與字母相乘時(shí),要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×應(yīng)寫(xiě)成a;
(5)在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般用分?jǐn)?shù)線(xiàn)將被除式和除式聯(lián)系,如3÷a寫(xiě)成的形式;
(6)a與b的差寫(xiě)作a-b,要注意字母順序;若只說(shuō)兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時(shí),則應(yīng)分類(lèi),寫(xiě)做a-b和b-a.
二、:幾個(gè)重要的代數(shù)式(m、n表示整數(shù))。
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個(gè)連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是:a2,非正數(shù)是:-a2.
三、:有理數(shù)。
1.有理數(shù):
(1)凡能寫(xiě)成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)有理數(shù)的分類(lèi):①②
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn).
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2)絕對(duì)值可表示為:初一上冊(cè)知識(shí)點(diǎn)絕對(duì)值的問(wèn)題經(jīng)常分類(lèi)討論;
(4)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,
5.有理數(shù)比大?。?1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
四、:有理數(shù)法則及運(yùn)算規(guī)律。
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
2.有理數(shù)加法的運(yùn)算律:
(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).
3.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).
4.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.
5.有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
6.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),.
7.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
五、:乘方的定義。
(1)求相同因式積的運(yùn)算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
(4)據(jù)規(guī)律底數(shù)的小數(shù)點(diǎn)移動(dòng)一位,平方數(shù)的小數(shù)點(diǎn)移動(dòng)二位.
3.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位.
4.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.
5.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:怎樣算簡(jiǎn)單,怎樣算準(zhǔn)確,是數(shù)學(xué)計(jì)算的最重要的原則.
6.特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.
六、:整式的加減。
1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算?;螂m含有除法運(yùn)算,但除式中不含字母的一類(lèi)代數(shù)式叫單項(xiàng)式.
2.單項(xiàng)式的系數(shù)與次數(shù):?jiǎn)雾?xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡(jiǎn)稱(chēng)單項(xiàng)式的系數(shù);系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).
3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.
4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);注意:(若a、b、c、p、q是常數(shù))是常見(jiàn)的兩個(gè)二次三項(xiàng)式.
5.整式:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)為整式.
七、:整式分類(lèi)為。
1.同類(lèi)項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類(lèi)項(xiàng).
2.合并同類(lèi)項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變.
3.去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào).
4.整式的加減:整式的加減,實(shí)際上是在去括號(hào)的基礎(chǔ)上,把多項(xiàng)式的同類(lèi)項(xiàng)合并.
5.多項(xiàng)式的升冪和降冪排列:把一個(gè)多項(xiàng)式的各項(xiàng)按某個(gè)字母的指數(shù)從小到大(或從大到小)排列起來(lái),叫做按這個(gè)字母的升冪排列(或降冪排列).注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.
初中數(shù)學(xué)學(xué)習(xí)方法
(1)認(rèn)真分析問(wèn)題,找解題準(zhǔn)切入點(diǎn)
由于數(shù)學(xué)問(wèn)題紛繁復(fù)雜,學(xué)生容易受定勢(shì)思維的影響,這樣就會(huì)響解題思路造成很大的影響。為此,這時(shí)教師要給予學(xué)生正確指導(dǎo),幫助學(xué)生進(jìn)行思路的調(diào)整,對(duì)題目進(jìn)行重新認(rèn)真的分析,將切入點(diǎn)找準(zhǔn)后,問(wèn)題就能游刃而解了。例如:已知:AB=DC,AC=DB。求證:∠A=∠D。
此題是一道比較經(jīng)典的證明全等的題型,主要是對(duì)學(xué)生對(duì)已知條件整合能力和觀(guān)察識(shí)圖能力的鍛煉。然而,從圖形的直觀(guān)角度來(lái)證明∠AOC=∠DOB,這樣的思路只會(huì)落入題目所設(shè)下的陷阱。為此,在對(duì)此題的審題時(shí),教師要引導(dǎo)學(xué)生注意將題目已知的兩個(gè)條件充分結(jié)合起來(lái)考慮,提醒學(xué)生可以適當(dāng)添加一定的輔助線(xiàn)。
(2)發(fā)揮想象力,借助面積出奇制勝
面積問(wèn)題是數(shù)學(xué)中常出現(xiàn)的問(wèn)題,在面積定義及相關(guān)規(guī)律中,蘊(yùn)含著深刻的數(shù)學(xué)思想,如果學(xué)生能充分了解其中的韻味,能夠熟練的掌握其中的數(shù)學(xué)論證思維,就有可能在其他數(shù)學(xué)問(wèn)題中借助面積,出奇制勝順利實(shí)現(xiàn)解題。由于幾何圖形的面積與線(xiàn)段、角、弧等有密切的聯(lián)系,所以用面積法不但可證各種幾何圖形面積的等量關(guān)系,還可證某些線(xiàn)段相等、線(xiàn)段不等、角的相等以及比例式等多種類(lèi)型的幾何題。例1、 若E、F分別是矩形ABCD邊AB、CD的中點(diǎn),且矩形EFDA與矩形ABCD相似,則矩形ABCD的寬與長(zhǎng)之比為( ) (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1
由上題已知信息可知,矩形ABCD的寬AD與AB的比,就是矩形EFDA與矩形ABCD的相似比。解:設(shè)矩形EFDA與矩形ABCD的相似比為k。因?yàn)镋、F分別是矩形ABCD的中點(diǎn),所以S矩形ABCD=2S矩形EFDA。所以S矩形EFDA∶S矩形ABCD=k2。所以k=1∶2。即矩形ABCD的寬與長(zhǎng)之比為1∶2;故選(C)。
此題利用了“相似多邊形面積的比等于相似比平方”這一性質(zhì),巧妙解決相似矩形中的長(zhǎng)與寬比的問(wèn)題。事實(shí)上,借助面積,形成解題思路的過(guò)程,就是學(xué)生思維轉(zhuǎn)換的過(guò)程。
(3)巧取特殊值,以簡(jiǎn)代繁
初中數(shù)學(xué)雖然是基礎(chǔ)數(shù)學(xué),但是這并不意味著就沒(méi)有難度,特別是在素質(zhì)教育下,從培養(yǎng)學(xué)生綜合素質(zhì)能力的角度出發(fā),初中數(shù)學(xué)越來(lái)越重視數(shù)學(xué)思維的培養(yǎng),因此在很多數(shù)學(xué)問(wèn)題的設(shè)置上,都進(jìn)行了相當(dāng)難度的調(diào)整,使得數(shù)學(xué)問(wèn)題顯得較為繁雜,單一的思維或者解題方式,在有些題目面前會(huì)顯得較為艱難。如有些數(shù)學(xué)問(wèn)題是在一定的范圍內(nèi)研究它的性質(zhì),如果從所有的值去逐一考慮,那么問(wèn)題將不勝其繁甚至陷入困境。在這種情況下,避開(kāi)常規(guī)解法,跳出既定數(shù)學(xué)思維,就成了解題的關(guān)鍵。
例2、分解因式:x2+2xy-8y2+2x+14y-3。
思路分析:本題是二元多項(xiàng)式,從常規(guī)思路進(jìn)行解題也未嘗不可,但是從鍛煉學(xué)生思維能力的角度出發(fā),教師可以在立足常規(guī)解法的基礎(chǔ)上,引導(dǎo)學(xué)生進(jìn)行其他方面解題思路的探索。如從巧取特值的角度出發(fā),把其中的一個(gè)未知數(shù)設(shè)為0,則可以暫時(shí)隱去這個(gè)未知數(shù),而就另一個(gè)未知數(shù)的式子來(lái)分解因式,達(dá)到化二元為一元的目的。
解:令y=0,得x2+2x-3=(x+3)(x-1);令x=0,得:-8y2+14y-3=(-2y+3)(4y-1)。當(dāng)把兩次分解的一次項(xiàng)的系數(shù)1、1;-2、4??芍?,1×4+(-2)×1正好等于原式中xy項(xiàng)的系數(shù)。因此,綜合起來(lái)有:x2+2xy-8y2+2x+14y-3=(x-2y+3)(x+4y-1)。
其實(shí),用特殊值法,也叫取零法。這種方法在因式分解中可以發(fā)揮很大的作用,幫助學(xué)生找到其他的解題思路。一般來(lái)說(shuō)其步驟是:A、把多項(xiàng)式中的一個(gè)字母設(shè)為0所得的結(jié)果分解因式,B、把多項(xiàng)中的另一個(gè)字母設(shè)為0所得的結(jié)果分解因式,C、把上兩步分解的結(jié)果綜合起來(lái),得出原多項(xiàng)式的分解結(jié)果。但要注意:兩次分解的一次因式的常數(shù)項(xiàng)必須相等,如本題中,x+3的3和-2y+3的3相等,x-1的-1和4y-1的-1相等。否則,在綜合這兩步的結(jié)果時(shí)就無(wú)所適從了。
(4)巧妙轉(zhuǎn)換,過(guò)渡求解法
在解數(shù)學(xué)題時(shí),即要對(duì)已知的條件進(jìn)行全面分析,還要善于將題目中的隱性條件挖掘出來(lái),將數(shù)學(xué)中各知識(shí)之間的聯(lián)系巧妙的運(yùn)用起來(lái),用全面、全新的視角來(lái)解決問(wèn)題。
例如:已知:AB為半圓的直徑,其長(zhǎng)度為30 cm,點(diǎn)C、D是該半圓的三等分點(diǎn),求弦AC、AD與弧CD所圍成的圖形的面積。
本題需要解出的是一個(gè)不規(guī)則圖形的面積,可能大多數(shù)同學(xué)的思維就是將CD連結(jié)起來(lái),將其轉(zhuǎn)變?yōu)橐粋€(gè)角形和弓形,兩者面積之和就為該題需要解決的問(wèn)題。這時(shí),教師就要引導(dǎo)學(xué)生學(xué)會(huì)對(duì)半徑這一已知條件加以利用,幫助其將另外兩條OC、OD輔助線(xiàn)連結(jié)起來(lái),將題目要求解的不規(guī)則圖形的面積,轉(zhuǎn)化成求扇形OCD的面積,這樣該題的解題思維就能一目了然了。
綜上所述,初中數(shù)學(xué)解題存在很強(qiáng)的靈活性。有的數(shù)學(xué)題不只一種解法,而有多種解法,有的數(shù)學(xué)題用常規(guī)方法解決不了,要用特殊方法。因此,解數(shù)學(xué)題要注意它的靈活性和技巧性。解題技巧在升學(xué)考試中至關(guān)重要,不能忽視。初中數(shù)學(xué)教師要注意對(duì)解題技巧的鉆研,并鼓勵(lì)學(xué)生發(fā)散思維,尋找解題技巧,提高解題效率,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的能力。
初中數(shù)學(xué)解題技巧
1. 數(shù)學(xué)探索題
所謂探索題就是從問(wèn)題給定的題設(shè)條件中探究其相應(yīng)的結(jié)論并加以證明,或從給定的題目要求中探究相應(yīng)的必需具備的條件、解決問(wèn)題的途徑。
條件探索題:解答策略之一是將題設(shè)和結(jié)論視為已知,同時(shí)推理,在演繹的過(guò)程中尋找出相應(yīng)所需的條件。
結(jié)論探索題:通常指結(jié)論不確定不唯一,或結(jié)論需通過(guò)類(lèi)比、引申、推廣,或給出特例需通過(guò)歸納得出一般結(jié)論??梢韵炔聹y(cè)再去證明;也可以尋求具體情況下的結(jié)論再證明;或直接演繹推證。
規(guī)律探索題:實(shí)際就是探索多種解決問(wèn)題的途徑,制定多種解題的策略。
活動(dòng)型探索題:讓學(xué)生參與一定的社會(huì)實(shí)踐,在課內(nèi)和課外的活動(dòng)中,通過(guò)探究完成問(wèn)題解決。
推廣型探索題:將一個(gè)簡(jiǎn)單的問(wèn)題,加以推廣,可產(chǎn)生新的結(jié)論,在初中教學(xué)中常見(jiàn)。如平行四邊形的判定,就可以產(chǎn)生許多新的推廣,一方面是自身的推廣,一方面可以延伸到菱形和正方形中。
探索是數(shù)學(xué)的生命線(xiàn),解探索題是一種富有創(chuàng)造性的思維活動(dòng),一種數(shù)學(xué)形式的探索絕不是單一的思維方式的結(jié)果,而是多種思維方式的聯(lián)系和滲透,這樣可使學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中敢于質(zhì)疑、提問(wèn)、反思、推廣。通過(guò)探索去經(jīng)歷數(shù)學(xué)發(fā)現(xiàn)、數(shù)學(xué)探究、數(shù)學(xué)創(chuàng)造的過(guò)程,體會(huì)創(chuàng)造帶來(lái)的快樂(lè)。
2. 數(shù)學(xué)情境題
情境題是以一段生活實(shí)際、故事、歷史、游戲與數(shù)學(xué)問(wèn)題、數(shù)學(xué)思想和方法于情境中。這類(lèi)問(wèn)題往往生動(dòng)有趣,激發(fā)學(xué)生強(qiáng)烈的研究動(dòng)機(jī),但同時(shí)數(shù)學(xué)情景題又有信息量大,開(kāi)放性強(qiáng)的特點(diǎn),因此需要學(xué)生能從場(chǎng)景中提煉出數(shù)學(xué)問(wèn)題,同時(shí)經(jīng)歷了借助數(shù)學(xué)知識(shí)研究實(shí)際問(wèn)題的數(shù)學(xué)化過(guò)程。
如老師在講有理數(shù)的混合運(yùn)算時(shí),
3. 數(shù)學(xué)開(kāi)放題
數(shù)學(xué)開(kāi)放題是相對(duì)于傳統(tǒng)的封閉題而言的一種新題型,其特征是題目的條件不充分,或沒(méi)有確定的結(jié)論,也正因?yàn)檫@樣,所以開(kāi)放題的解題策略往往也是多種多樣的。
( 1 )數(shù)學(xué)開(kāi)放題一般具有下列特征
?、俨淮_定性:所提的問(wèn)題常常是不確定的和一般性的,其背景情況也是用一般詞語(yǔ)來(lái)描述的,因此需收集其他必要的信息,才能著手解的題目。
②探究性:沒(méi)有現(xiàn)成的解題模式,有些答案可能易于直覺(jué)地被發(fā)現(xiàn),但是求解過(guò)程中往往需要從多個(gè)角度進(jìn)行思考和探索。
③非完備性:有些問(wèn)題的答案是不確定的,存在著多樣的解答,但重要的還不是答案本身的多樣性,而在于尋求解答的過(guò)程中學(xué)生的認(rèn)知結(jié)構(gòu)的重建。
?、馨l(fā)散性:在求解過(guò)程中往往可以引出新的問(wèn)題,或?qū)?wèn)題加以推廣,找出更一般、更概括性的結(jié)論。常常通過(guò)實(shí)際問(wèn)題提出,學(xué)生必須用數(shù)學(xué)語(yǔ)言將其數(shù)學(xué)化,也就是建立數(shù)學(xué)模型。
⑤發(fā)展性:能激起多數(shù)學(xué)生的好奇性,全體學(xué)生都可以參與解答過(guò)程。
?、迍?chuàng)新性:教師難以用注入式進(jìn)行教學(xué),學(xué)生能自然地主動(dòng)參與,教師在解題過(guò)程中的地位是示范者、啟發(fā)者、鼓勵(lì)者、合作者。
( 2 )對(duì)數(shù)學(xué)開(kāi)放題的分類(lèi)
從構(gòu)成數(shù)學(xué)題系統(tǒng)的四要素(條件、依據(jù)、方法、結(jié)論)出發(fā),定性地可分成四類(lèi);如果尋求的答案是數(shù)學(xué)題的條件,則稱(chēng)為條件開(kāi)放題;如果尋求的答案是依據(jù)或方法,則稱(chēng)為策略開(kāi)放題;如果尋求的答案是結(jié)論,則稱(chēng)為結(jié)論開(kāi)放題;如果數(shù)學(xué)題的條件、解題策略或結(jié)論都要求解題者在給定的情境中自行設(shè)定與尋找,則稱(chēng)為綜合開(kāi)放題。
從學(xué)生的學(xué)習(xí)生活和熟悉的事物中收集材料,設(shè)計(jì)成各種形式的數(shù)學(xué)開(kāi)放性問(wèn)題,意在開(kāi)放學(xué)生的思路,開(kāi)放學(xué)生潛在的學(xué)習(xí)能力,開(kāi)放性數(shù)學(xué)問(wèn)題給不同層次的學(xué)生學(xué)好數(shù)學(xué)創(chuàng)設(shè)了機(jī)會(huì),多種解題策略的應(yīng)用,有力地發(fā)展了學(xué)生的創(chuàng)新思維,培養(yǎng)了學(xué)生的創(chuàng)新技能,提高了學(xué)生的創(chuàng)新能力。
( 3 )以數(shù)學(xué)開(kāi)放題為載體的教學(xué)特征
?、賻熒P(guān)系開(kāi)放:教師與學(xué)生成為問(wèn)題解決的共同合作者和研究者
?、诮虒W(xué)內(nèi)容開(kāi)放:開(kāi)放題往往條件不完全、或結(jié)論不完全,需要收集信息加以分析和研究,給數(shù)學(xué)留下了創(chuàng)新的空間。
?、劢虒W(xué)過(guò)程的開(kāi)放性:由于研究的內(nèi)容的開(kāi)放性可以激起學(xué)生的好奇心、同時(shí)由于問(wèn)題的開(kāi)放性,就沒(méi)有現(xiàn)成的解題模式,因此就會(huì)留下想象的空間,使所有的學(xué)生都可參與想象和解答。
( 4 )開(kāi)放題的教育價(jià)值
有利于培養(yǎng)學(xué)生良好的思維品質(zhì);
有助于學(xué)生主體意識(shí)的形成;
有利于全體學(xué)生的參與,實(shí)現(xiàn)教學(xué)的民主性和合作性;
有利于學(xué)生體驗(yàn)成功、樹(shù)立信心,增強(qiáng)學(xué)習(xí)的興趣;
有助于提高學(xué)生解決問(wèn)題的能力。
4. 數(shù)學(xué)建模題(初中數(shù)學(xué)建模題也可以看作是數(shù)學(xué)應(yīng)用題)
數(shù)學(xué)新課程標(biāo)準(zhǔn)指出 : 要學(xué)生會(huì)應(yīng)用所學(xué)知識(shí)解決實(shí)際問(wèn)題 , 能適應(yīng)社會(huì)日常生活和生產(chǎn)勞動(dòng)的基本需要。初中數(shù)學(xué)的學(xué)習(xí)目的之一 , 就是培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力 , 要求學(xué)生會(huì)分析和解決生產(chǎn)、生活中的數(shù)學(xué)問(wèn)題 , 形成善于應(yīng)用數(shù)學(xué)的意識(shí)和能力。從各省市的中考數(shù)學(xué)命題來(lái)看 , 也更關(guān)注學(xué)生靈活運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題能力的考查 , 可以說(shuō)培養(yǎng)學(xué)生解答應(yīng)用題的能力是使學(xué)生能夠運(yùn)用所學(xué)數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的基本途徑之一。
猜你喜歡:
1.高考數(shù)學(xué)知識(shí)點(diǎn)梳理
2.初中數(shù)學(xué)知識(shí)點(diǎn)歸納
3.初中數(shù)學(xué)知識(shí)要點(diǎn)口訣總匯