特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 通用學(xué)習(xí)方法 > 復(fù)習(xí)方法 > 初中數(shù)學(xué)解題方法具體有哪些

初中數(shù)學(xué)解題方法具體有哪些

時(shí)間: 欣怡1112 分享

初中數(shù)學(xué)解題方法具體有哪些

  有些學(xué)生同學(xué)天天趴在那里做題,但解出的題量卻不多,花了大量的時(shí)間,卻沒(méi)有解出大量的習(xí)題,所以,以下是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)解題方法,希望可以幫到你!

初中數(shù)學(xué)解題方法

  配方法

  所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  因式分解法

  因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角函數(shù)等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

  換元法

  換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱(chēng)為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

  判別式法與韋達(dá)定理

  一元二次方程ax2 bx c=0(a、b、c∈R,a≠0)根的判別式△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至解析幾何、三角函數(shù)運(yùn)算中都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱(chēng)函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱(chēng)方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。

  待定系數(shù)法

  在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的重要方法之一。

  構(gòu)造法

  在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱(chēng)為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。

  反證法

  反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。

  用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

  反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n-1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。

  歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

  等(面或體)積法

  平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積(體積),而且用它來(lái)證明(計(jì)算)幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積(體積)關(guān)系來(lái)證明或計(jì)算幾何題的方法,稱(chēng)為等(面或體)積法,它是幾何中的一種常用方法。

  用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點(diǎn)是把已知和未知各量用面積(體積)公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用等(面或體)積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。

  幾何變換法

  在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱(chēng)。

  客觀性題的解題方法

  選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。

  初中數(shù)學(xué)解題技巧

  一、選擇題的解法

  1、直接法:根據(jù)選擇題的題設(shè)條件,通過(guò)計(jì)算、推理或判斷,,最后得到題目的所求。

  2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān),在解這類(lèi)選擇題時(shí),可以考慮從取值范圍內(nèi)選取某幾個(gè)特殊值,代入原命題進(jìn)行驗(yàn)證,然后淘汰錯(cuò)誤的,保留正確的。

  3、淘汰法:把題目所給的四個(gè)結(jié)論逐一代回原題的題干中進(jìn)行驗(yàn)證,把錯(cuò)誤的淘汰掉,直至找到正確的答案。

  4、逐步淘汰法:如果我們?cè)谟?jì)算或推導(dǎo)的過(guò)程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略,每走一步都與四個(gè)結(jié)論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個(gè)錯(cuò)誤的結(jié)論就被全部淘汰掉了。

  5、數(shù)形結(jié)合法:根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義,使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解題思路,使問(wèn)題得到解決。

  二、常用的數(shù)學(xué)思想方法

  1、數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義,使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解體思路,使問(wèn)題得到解決。

  2、聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。

  3、分類(lèi)討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對(duì)象性質(zhì)的差異,分各種不同情況予以考查,這種分類(lèi)思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種重要的解題策略。

  4、待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問(wèn)題得到解決。

  5、配方法:就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問(wèn)題,都有重要的作用。

  6、換元法:在解題過(guò)程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問(wèn)題的一種方法。換元法可以把一個(gè)較為復(fù)雜的式子化簡(jiǎn),把問(wèn)題歸結(jié)為比原來(lái)更為基本的問(wèn)題,從而達(dá)到化繁為簡(jiǎn),化難為易的目的。

  7、分析法:在研究或證明一個(gè)命題時(shí),又結(jié)論向已知條件追溯,既從結(jié)論開(kāi)始,推求它成立的充分條件,這個(gè)條件的成立還不顯然,則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過(guò)程通常稱(chēng)為“執(zhí)果尋因”

  8、綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開(kāi)始,逐步推導(dǎo)得到結(jié)論,這種思維過(guò)程通常稱(chēng)為“由因?qū)Ч?rdquo;

  9、演繹法:由一般到特殊的推理方法。

  10、歸納法:由一般到特殊的推理方法。

  11、類(lèi)比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個(gè)或兩類(lèi)事物之間,根據(jù)它們的某些屬性相同或相似,推出它們?cè)谄渌麑傩苑矫嬉部赡芟嗤蛳嗨频耐评矸椒?。?lèi)比法既可能是特殊到特殊,也可能一般到一般的推理。

  三、函數(shù)、方程、不等式

  常用的數(shù)學(xué)思想方法:⑴數(shù)形結(jié)合的思想方法。⑵待定系數(shù)法。⑶配方法。⑷聯(lián)系與轉(zhuǎn)化的思想。⑸圖像的平移變換。

  初中數(shù)學(xué)解題建議

  一、熟悉習(xí)題中所涉及的內(nèi)容,包括定義、公式、定理和規(guī)則。

  解題、做練習(xí)只是學(xué)習(xí)過(guò)程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題是為閱讀服務(wù)的,是檢查你是否讀懂了教科書(shū),是否深刻理解了其中的概念、定理、公式和規(guī)則,能否利用這些概念、定理、公式和規(guī)則解決實(shí)際問(wèn)題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。

  因此,我們?cè)诮忸}之前,應(yīng)通過(guò)閱讀教科書(shū)和做簡(jiǎn)單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。

  二、熟悉習(xí)題中所涉及到的以前學(xué)過(guò)的知識(shí),以及與其他學(xué)科相關(guān)的知識(shí)。

  有時(shí)候,我們遇到一道不會(huì)做的習(xí)題,不是我們沒(méi)有學(xué)會(huì)現(xiàn)在所要學(xué)會(huì)的內(nèi)容,而是要用到過(guò)去已經(jīng)學(xué)過(guò)的一個(gè)公式,而我們卻記得不很清楚了;或是需用到一個(gè)特殊的定理,而我們卻從未學(xué)過(guò),這樣就使解題速度大為降低。

  這時(shí),我們應(yīng)先補(bǔ)充一些必須補(bǔ)充的相關(guān)知識(shí),弄清楚與題目相關(guān)的概念、公式或定理,然后再去解題,否則就是浪費(fèi)時(shí)間,當(dāng)然,解題速度就更無(wú)從談起了。

  三、熟悉基本的解題步驟和解題方法。

  解題的過(guò)程,是一個(gè)思維的過(guò)程。對(duì)一些基本的、常見(jiàn)的問(wèn)題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。否則,走了彎路就多花了時(shí)間。

  四、認(rèn)真做好歸納總結(jié)。

  在解過(guò)一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類(lèi)似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。

  五、先易后難,逐步增加習(xí)題的難度。

  人們認(rèn)識(shí)事物的過(guò)程都是從簡(jiǎn)單到復(fù)雜。簡(jiǎn)單的問(wèn)題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。養(yǎng)成了習(xí)慣,遇到一般的難題,同樣可以保持較高的解題速度。有些學(xué)生不太重視這些基本的、簡(jiǎn)單的習(xí)題,認(rèn)為沒(méi)有必要花費(fèi)時(shí)間去解這些簡(jiǎn)單的習(xí)題,結(jié)果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無(wú)策,解題速度就更不用說(shuō)了。

  其實(shí),解簡(jiǎn)單容易的習(xí)題,并不一定比解一道復(fù)雜難題的勞動(dòng)強(qiáng)度和效率低。比如,與一個(gè)人扛一大袋大米上五層樓相比,一個(gè)人拎一個(gè)小提包也上到五層樓當(dāng)然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來(lái)回上下50次、甚至100次,那么,拎包人比扛米人的勞動(dòng)強(qiáng)度大。所以在相同時(shí)間內(nèi),解50道、100道簡(jiǎn)單題,可能要比解一道難題的勞動(dòng)強(qiáng)度大。

  由此可見(jiàn),去解一道難以解出的難題,不如去解30道稍微簡(jiǎn)單一些的習(xí)題,其收獲也許會(huì)更大。因此,我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。

  六、認(rèn)真、仔細(xì)地審題。

  對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過(guò)程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。讀題一旦結(jié)束,哪些是已知條件?求解的結(jié)論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應(yīng)該已經(jīng)結(jié)成了一張網(wǎng),并有了初步的思路和解題方案,然后就是根據(jù)自己的思路,演算一遍,加以驗(yàn)證。

  有些學(xué)生沒(méi)有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開(kāi)始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來(lái),還找不到原因,想快卻慢了。很多時(shí)候?qū)W生問(wèn)問(wèn)題的時(shí)候,老師和他一起讀題,讀到一半時(shí),他說(shuō):“老師,我會(huì)了。”所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。

  七、學(xué)會(huì)畫(huà)圖。

  畫(huà)圖是一個(gè)翻譯的過(guò)程。讀題時(shí),若能根據(jù)題義,把對(duì)數(shù)學(xué)(或其他學(xué)科)語(yǔ)言的理解,畫(huà)成分析圖,就使題目變得形象、直觀。這樣就把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫(huà)出來(lái),其中的關(guān)系就變得一目了然。尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫(huà)圖,有時(shí)簡(jiǎn)直是無(wú)從下手。

  因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過(guò)程和條件,對(duì)于提高解題速度非常重要。畫(huà)圖時(shí)應(yīng)注意盡量畫(huà)得準(zhǔn)確。畫(huà)圖準(zhǔn)確,有時(shí)能使你一眼就看出答案,再進(jìn)一步去演算證實(shí)就可以了;反之,作圖不準(zhǔn)確,有時(shí)會(huì)將你引入歧途。

  總之,學(xué)習(xí)是一個(gè)不斷深化的認(rèn)識(shí)過(guò)程,解題只是學(xué)習(xí)的一個(gè)重要環(huán)節(jié)。你對(duì)學(xué)習(xí)的內(nèi)容越熟悉,對(duì)基本解題思路和方法越熟悉,背熟的數(shù)字、公式越多,并能把局部與整體有機(jī)地結(jié)合為一體,形成了跳躍性思維,就可以大大加快解題速度。

猜你喜歡:

1.初中數(shù)學(xué)規(guī)律題公式

2.初中數(shù)學(xué)學(xué)習(xí)方法與技巧

3.關(guān)于初中數(shù)學(xué)的學(xué)習(xí)方法有哪些

4.初一數(shù)學(xué)解題技巧

5.初中數(shù)學(xué)學(xué)習(xí)方法的六大要點(diǎn)

3846265