特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦>學習方法>通用學習方法>復習方法> 初中幾何解題技巧歸納總結

初中幾何解題技巧歸納總結

時間: 欣怡1112 分享

初中幾何解題技巧歸納總結

  幾何是初中數(shù)學最主要的內容,對大多數(shù)孩子來說也是比較難的內容。所以,為了幫助孩子們更好的學習初中幾何,以下是學習啦小編分享給大家的初中幾何解題技巧,希望可以幫到你!

  初中幾何解題技巧

  一要審題。

  很多學生在把一個題目讀完后,還沒有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可取。我們應該逐個條件的讀,給的條件有什么用,在腦海中打個問號,再對應圖形來對號入座,結論從什么地方入手去尋找,也在圖中找到位置。

  二要記。

  這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。

  三要引申。

  難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那么這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論,然后在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便于以后難題的學習。

  四要分析綜合法。

  分析綜合法也就是要逆向推理,從題目要你證明的結論出發(fā)往回推理??纯唇Y論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內錯角相等3.余角、補角定理4.角平分線定義5.等腰三角形6.全等三角形的對應角等等方法。)結合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現(xiàn),這時再把這些條件綜合在一起,很條理的寫出證明過程。

  五要歸納總結。

  很多同學把一個題做出來,長長的松了一口氣,接下來去做其他的,這個也是不可取的,應該花上幾分鐘的時間,回過頭來找找所用的定理、公理、定義,重新審視這個題,總結這個題的解題思路,往后出現(xiàn)同樣類型的題該怎樣入手。

  以上是常見證明題的解題思路,當然有一些的題設計的很巧妙,往往需要我們在填加輔助線,分析已知、求證與圖形,探索證明的思路。對于證明題,有三種思考方式:

  (1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。

  (2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數(shù)學中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學這門學科知識點很少,關鍵是怎樣運用,對于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結做題方法。同學們認真讀完一道題的題干后,不知道從何入手,建議你從結論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。

  (3)正逆結合。對于從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數(shù)學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰(zhàn)無不勝。

  初中幾何解題建議

  一、拿到一道題先去找,找條件,有沒有特殊的點,特殊的線段,特殊的關系。

  二、想,有沒有學過相關的模型或解題方法。

  三、添加輔助線,使得模型完整或是能夠使得特殊圖形的性質得以應用。

  四、從模型中推出能夠得到的結論,逐步解決問題。

  五、轉化結論,似的所求更加明顯,使其與已知條件聯(lián)系更緊密。再與第四步結合進行綜合分析。

  初中幾何常見輔助線作法歌訣

  三角形

  圖中有角平分線,可向兩邊作垂線。

  也可將圖對折看,對稱以后關系現(xiàn)。

  角平分線平行線,等腰三角形來添。

  角平分線加垂線,三線合一試試看。

  線段垂直平分線,常向兩端把線連。

  要證線段倍與半,延長縮短可試驗。

  三角形中兩中點,連接則成中位線。

  三角形中有中線,延長中線等中線。

  四邊形

  平行四邊形出現(xiàn),對稱中心等分點。

  梯形里面作高線,平移一腰試試看。

  平行移動對角線,補成三角形常見。

  證相似,比線段,添線平行成習慣。

  等積式子比例換,尋找線段很關鍵。

  直接證明有困難,等量代換少麻煩。

  斜邊上面作高線,比例中項一大片。

  圓

  半徑與弦長計算,弦心距來中間站。

  圓上若有一切線,切點圓心半徑連。

  切線長度的計算,勾股定理最方便。

  要想證明是切線,半徑垂線仔細辨。

  是直徑,成半圓,想成直角徑連弦。

  弧有中點圓心連,垂徑定理要記全。

  圓周角邊兩條弦,直徑和弦端點連。

  弦切角邊切線弦,同弧對角等找完。

  要想作個外接圓,各邊作出中垂線。

  還要作個內接圓,內角平分線夢圓

  如果遇到相交圓,不要忘作公共弦。

  內外相切的兩圓,經(jīng)過切點公切線。

  若是添上連心線,切點肯定在上面。

  要作等角添個圓,證明題目少困難。

  輔助線,是虛線,畫圖注意勿改變。

  假如圖形較分散,對稱旋轉去實驗。

  基本作圖很關鍵,平時掌握要熟練。

  解題還要多心眼,經(jīng)常總結方法顯。

  切勿盲目亂添線,方法靈活應多變。

  分析綜合方法選,困難再多也會減。

  虛心勤學加苦練,成績上升成直線。

猜你喜歡:

1.談初中幾何證明題的入門論文范文

2.數(shù)學高考重點題型歸納

3.初中數(shù)學知識點全總結

4.初中化學題型歸納總結

5.初中的數(shù)學知識點總結歸納

3837500