初一數(shù)學知識歸納總結(jié)有哪些
初一數(shù)學知識歸納總結(jié)有哪些
初一是學生知識奠定的根基時期,所以在初一學好數(shù)學的知識點特別重要。以下是學習啦小編分享給大家的初一數(shù)學知識歸納總結(jié),希望可以幫到你!
初一數(shù)學知識歸納總結(jié)
一、:代數(shù)初步知識。
1.代數(shù)式:用運算符號“+-×÷……”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應保證它所在的式子有意義,其次字母所取得數(shù)還應使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“·”乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應使用“×”乘,不用“·”乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應寫成5a;
(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設兩數(shù)為a、b時,則應分類,寫做a-b和b-a.
二、:幾個重要的代數(shù)式(m、n表示整數(shù))。
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2.
三、:有理數(shù)。
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);π不是有理數(shù);
(2)有理數(shù)的分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;
4.絕對值:
(1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
(2)絕對值可表示為:初一上冊知識點絕對值的問題經(jīng)常分類討論;
(4)|a|是重要的非負數(shù),即|a|≥0;注意:|a|·|b|=|a·b|,
5.有理數(shù)比大?。?1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
四、:有理數(shù)法則及運算規(guī)律。
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).
2.有理數(shù)加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).
3.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).
4.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.
5.有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
6.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.
7.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
五、:乘方的定義。
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
(4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.
3.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.
4.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.
5.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學計算的最重要的原則.
6.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.
六、:整式的加減。
1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.
2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))是常見的兩個二次三項式.
5.整式:單項式和多項式統(tǒng)稱為整式.
七、:整式分類為。
1.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.
2.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.
3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.
4.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.
5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應該進行升冪(或降冪)排列.
八、:一元一次方程
1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;
等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.
3.方程:含未知數(shù)的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.
6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.
7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).
8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).
9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解).
九、:列一元一次方程解應用題。
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
十、:.列方程解應用題的常用公式。
初一數(shù)學學習的建議
1.預習方法的指導。
初一學生往往不善于預習,也不知道預習起什么作用,預習僅是流于形式,草草看一遍,看不出問題和疑點。在指導學生預習時應要求學生做到:一粗讀,先粗略瀏覽教材的有關(guān)內(nèi)容,掌握本節(jié)知識的概貌。二細讀,對重要概念、公式、法則、定理反復閱讀、體會、思考,注意知識的形成過程,對難以理解的概念作出記號,以便帶著疑問去聽課。方法上可采用隨課預習或單元預習。預習前教師先布置預習提綱,使學生有的放矢。實踐證明,養(yǎng)成良好的預習習慣,能使學生變被動學習為主動學習,同時能逐漸培養(yǎng)學生的自學能力。
2.聽課方法的指導。
在聽課方法的指導方面要處理好“聽”、“思”、“記”的關(guān)系
“聽”是直接用感官接受知識,應指導學生在聽的過程中注意:(1)聽每節(jié)課的學習要求;(2)聽知識引人及知識形成過程;(3)聽懂重點、難點剖析(尤其是預習中的疑點);(4)聽例題解法的思路和數(shù)學思想方法的體現(xiàn);(5)聽好課后小結(jié)。教師講課要重點突出,層次分明,要注意防止“注入式”、“滿堂灌”,一定掌握最佳講授時間,使學生聽之有效。
“思”是指學生思維。沒有思維,就發(fā)揮不了學生的主體作用。在思維方法指導時,應使學生注意:(1)多思、勤思,隨聽隨思;(2)深思,即追根溯源地思考,善于大膽提出問題;(3)善思,由聽和觀察去聯(lián)想、猜想、歸納;(4)樹立批判意識,學會反思??梢哉f“聽”是“思”的基儲關(guān)鍵,“思”是“聽”的深化,是學習方法的核心和本質(zhì)的內(nèi)容,會思維才會學習。
“記”是指學生課堂筆記。初一學生一般不會合理記筆記,通常是教師黑板上寫什么學生就抄什么,往往是用“記”代替“聽”和“思”。有的筆記雖然記得很全,但收效甚微。因此在指導學生作筆記時應要求學生:(1)記筆記服從聽講,要掌握記錄時機;(2)記要點、記疑問、記解題思路和方法;(3)記小結(jié)、記課后思考題。使學生明確“記”是為“聽”和“思”服務的。
掌握好這三者的關(guān)系,就能使課堂這一數(shù)學學習主要環(huán)節(jié)達到較完美的境界。
3.深后復習鞏固及完成作業(yè)方法的指導。
初一學生課后往往容易急于完成書面作業(yè),忽視必要的鞏固、記憶、復習。以致出現(xiàn)照例題模仿、套公式解題的現(xiàn)象,造成為交作業(yè)而做作業(yè),起不到作業(yè)的練習鞏固、深化理解知識的應有作用。為此在這個環(huán)節(jié)的學法指導上要求學生每天先閱讀教材,結(jié)合筆記記錄的重點、難點,回顧課堂講授的知識、方法,同時記憶公式、定理(記憶方法有類比記憶、聯(lián)想記憶、直觀記憶等)。然后獨立完成作業(yè),解題后再反思。在作業(yè)書寫方面也應注意“寫法”指導,要求學生書寫格式要規(guī)范、條理要清楚。初一學生做到這點很困難。指導時應教會學生(1)如何將文字語言轉(zhuǎn)化為符號語言;(2)如何將推理思考過程用文字書寫表達;(3)正確地由條件畫出圖形。這里教師的示范作用極為重要,開始可有意讓學生模仿、訓練,逐步使學生養(yǎng)成良好的書寫習慣,這對今后的學習和工作都十分重要。
4.小結(jié)或總結(jié)方法的指導。
在進行單元小結(jié)或?qū)W期總結(jié)時,初一學生容易依賴老師,習慣教師帶著復習總結(jié)。我認為從初一開始就應培養(yǎng)學生學會自己總結(jié)的方法。在具體指導時可給出復習總結(jié)的途徑。要做到一看:看書、看筆記、看習題,通過看,回憶、熟悉所學內(nèi)容;二列:列出相關(guān)的知識點,標出重點、難點,列出各知識點之間的關(guān)系,這相當于寫出總結(jié)要點;三做:在此基礎(chǔ)上有目的、有重點、有選擇地解一些各種檔次、類型的習題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。最后歸納出體現(xiàn)所學知識的各種題型及解題方法。應該說學會總結(jié)是數(shù)學學習的最高層次。
學生總結(jié)與教師總結(jié)應該結(jié)合,教師總結(jié)更應達到精煉、提高的目的,使學生水平向更高層發(fā)展。
初一數(shù)學學習方法
1.讀的方法。初一同學往往不善于讀數(shù)學書,在讀的過程中,易沿用死記硬背的方法。那么如何有效地讀數(shù)學書呢?平時應做到:
(1)粗讀。先粗略瀏覽教材的枝干,并能粗略掌握本章節(jié)知識的概貌,重、難點;
(2)細讀。對重要的概念、性質(zhì)、判定、公式、法則、思想方法等反復閱讀、體會、思考,領(lǐng)會其實質(zhì)及其因果關(guān)系,并在不理解的地方作上記號(以便求教);
(3)研讀。要研究知識間的內(nèi)在聯(lián)系,研討書本知識安排意圖,并對知識進行分析、歸納、總結(jié),以形成知識體系,完善認知結(jié)構(gòu)。
讀書,先求讀懂,再求讀透,使得自學能力和實際應用能力得到很好的訓練。
2.聽的方法。“聽”是直接用感官去接受知識,而初一同學往往對課程增多、課堂學習量加大不適應,顧此失彼,精力分散,使聽課效果下降。因此應在聽課的過程中注意做到:
(1) 聽每節(jié)課的學習要求;
(2) 聽知識的引入和形成過程;
(3) 聽懂教學中的重、難點(尤其是預習中不理解的或有疑問的知識點);
(4) 聽例題關(guān)鍵部分的提示及應用的數(shù)學思想方法;
(5) 聽好課后小結(jié)。
3.思考的方法。“思”指同學的思維。數(shù)學是思維的體操,學習離不開思維,
數(shù)學更離不開思維活動,善于思考則學得活,效率高;不善于思考則學得死,效果差??梢?,科學的思維方法是掌握好知識的前提。七年級學生的思維往往還停留在小學的思維中,思維狹窄。因此在學習中要做到:
(1) 敢于思考、勤于思考、隨讀隨思、隨聽隨思。在看書、聽講、練習時要多思考;
(2) 善于思考。會抓住問題的關(guān)鍵、知識的重點進行思考;
(3) 反思。要善于從回顧解題策略、方法的優(yōu)劣進行分析、歸納、總結(jié)。
4.問的方法??鬃釉唬?ldquo;敏而好學,不恥不問。” 愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學科的學習無不是從問題開始的。但七年級同學往往不善于問,不懂得如何問。因此,同學在平時學習中應掌握問問題的一些方法,主要有:
(1) 追問法。即在某個問題得到回答后,順其思路對問題緊追不舍,刨根到底繼續(xù)發(fā)問;
(2) 反問法。根據(jù)教材和教師所講的內(nèi)容,從相反的方向把問題提出來;
(3) 類比提問法。據(jù)某些相似的概念、定理、性質(zhì)等的相互關(guān)系,通過比較和類推提出問題;
(4) 聯(lián)系實際提問法。結(jié)合某些知識點,通過對實際生活中一些現(xiàn)象的觀察和分析提出問題。
此外,在提問時不僅要問其然,還要問其所以然。
5.記筆記的方法。很大一部分學生認為數(shù)學沒有筆記可記,有記筆記的學生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。
有的筆記雖然記得很全,但收效甚微。因此,學生作筆記時應做到以下幾點:
(1) 在“聽”,“思”中有選擇地記錄;
(2) 記學習內(nèi)容的要點,記自己有疑問的疑點,記書中沒有的知識及教師補充的知識點;
(3) 記解題思路、思想方法;
(4) 記課堂小結(jié)。并使學生明確筆記是為補充“聽”“思”的不足,是為最后復習準備的,好的筆記能使復習達到事倍功半的效果。
猜你喜歡: