初二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)歸納總結(jié)
初二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)歸納總結(jié)
初二的知識(shí)點(diǎn)已經(jīng)新鮮出爐了,趕緊來看看吧。其實(shí)學(xué)好數(shù)學(xué)并不是,對(duì)于所學(xué)過的知識(shí)進(jìn)行總結(jié)復(fù)習(xí),你也可以學(xué)好數(shù)學(xué)。下面是學(xué)習(xí)啦小編分享給大家的初二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn),希望大家喜歡!
初二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)一
一)運(yùn)用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。
(三)因式分解
1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。
把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個(gè)公式叫完全平方公式。
(2)完全平方式的形式和特點(diǎn)
?、夙?xiàng)數(shù):三項(xiàng)
②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。
?、塾幸豁?xiàng)是這兩個(gè)數(shù)的積的兩倍。
(3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。
(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。
(五)分組分解法
我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x.但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)?(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式.
初二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)二
全等三角形
一.知識(shí)框架
二.知識(shí)概念
1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過平移、旋轉(zhuǎn)、對(duì)稱等運(yùn)動(dòng)(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。
2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。
3.三角形全等的判定公理及推論有:
(1)“邊角邊”簡(jiǎn)稱“SAS”
(2)“角邊角”簡(jiǎn)稱“ASA”
(3)“邊邊邊”簡(jiǎn)稱“SSS”
(4)“角角邊”簡(jiǎn)稱“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).
在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到集合的真正魅力。
初二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)三
軸對(duì)稱
一.知識(shí)框架
二.知識(shí)概念
1.對(duì)稱軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形;這條直線叫做對(duì)稱軸。
2.性質(zhì):(1)軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
(2)角平分線上的點(diǎn)到角兩邊距離相等。
(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
(5)軸對(duì)稱圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡(jiǎn)稱為“三線合一”。
5.等腰三角形的判定:等角對(duì)等邊。
6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,
7.等邊三角形的判定:三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形
有兩個(gè)角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學(xué)生在建立在軸對(duì)稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。
猜你喜歡:
1.初二上學(xué)期數(shù)學(xué)知識(shí)點(diǎn)匯總
2.初二數(shù)學(xué)期末知識(shí)點(diǎn)內(nèi)容
3.八年級(jí)上冊(cè)數(shù)學(xué)總復(fù)習(xí)知識(shí)點(diǎn)