人教版九年級上冊數(shù)學期末復習資料
人教版九年級上冊數(shù)學期末復習資料
在初中階段學習方法非常重要,因為初中的學習的難度加深、靈活性加大,不能單單靠死記硬背的方法,應該要注意對知識的消化和理解。下面是學習啦小編分享給大家的九年級上冊數(shù)學期末復習資料的資料,希望大家喜歡!
九年級上冊數(shù)學期末復習資料一
一元二次方程
1. 一元二次方程的一般形式: a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關問題時,多數(shù)習題要先化為一般形式,目的是確定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式.
2. 一元二次方程的解法:一元二次方程的四種解法要求靈活運用, 其中直接開平方法雖然簡單,但是適用范圍較小;公式法雖然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少.
3. 一元二次方程根的判別式: 當ax2+bx+c=0 (a≠0)時,Δ=b2-4ac 叫一元二次方程根的判別式.請注意以下等價命題:
Δ>0 <=> 有兩個不等的實根;
Δ=0 <=> 有兩個相等的實根;
Δ<0 <=> 無實根;
4.平均增長率問題--------應用題的類型題之一 (設增長率為x):
(1) 第一年為 a , 第二年為a(1+x) , 第三年為a(1+x)2.
(2)常利用以下相等關系列方程: 第三年 = 第三年
或第一年+第二年+第三年=總和.
九年級上冊數(shù)學期末復習資料二
二次根式
二次根式:一般地,式子 叫做二次根式.
注意:(1)若 這個條件不成立,則 不是二次根式;
(2) 是一個重要的非負數(shù),即; ≥0.
2.重要公式:(1) ,(2) ;
3.積的算術平方根:
積的算術平方根等于積中各因式的算術平方根的積;
4.二次根式的乘法法則: .
5.二次根式比較大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大小;
(3)分別平方,然后比大小.
6.商的算術平方根: ,
商的算術平方根等于被除式的算術平方根除以除式的算術平方根.
7.二次根式的除法法則:
(1) ;(2) ;
(3)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎?
8.最簡二次根式:
(1)滿足下列兩個條件的二次根式,叫做最簡二次根式,
?、?被開方數(shù)的因數(shù)是整數(shù),因式是整式,
?、?被開方數(shù)中不含能開的盡的因數(shù)或因式;
(2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母;
(3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;
(4)二次根式計算的最后結(jié)果必須化為最簡二次根式.
10.同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式.
12.二次根式的混合運算:
(1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數(shù)運算,以前學過的,在有理數(shù)范圍內(nèi)的一切公式和運算律在二次根式的混合運算中都適用;
(2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等.
九年級上冊數(shù)學期末復習資料三
解直角三角形
.三角函數(shù)的定義:在RtΔABC中,如∠C=90°,那么
sinA= ; cosA= ;
tanA= ; cotA= .
2.余角三角函數(shù)關系 ------ “正余互化公式” 如∠A+∠B=90°, 那么:
sinA=cosB; cosA=sinB; tanA=cotB; cotA=tanB.
3. 同角三角函數(shù)關系:
sin 2A +cos 2A =1; tanA•cotA =1. tanA=
4. 函數(shù)的增減性:在銳角的條件下,正弦,正切函數(shù)隨角的增大,函數(shù)值增大;余弦,余切函數(shù)隨角的增大,函數(shù)值反而減小.
5.特殊角的三角函數(shù)值:如圖:這是兩個特殊的直角三角形,通過設k, 它可以推出特殊角的直角三角函數(shù)值,要熟練記憶它們.
猜你喜歡: