人教版初一數學復習資料有哪些
人教版初一數學復習資料有哪些
數學除了平時的學習,在考試前也一定要做好復習的準備,那么人教版初一數學復習資料有哪些呢?下面是學習啦小編分享給大家的人教版初一數學復習資料的資料,希望大家喜歡!
人教版初一數學復習資料一
第一章 有理數
一、 知識要點
本章的主要內容可以概括為有理數的概念與有理數的運算兩部分。有理數的概念可以利用數軸來認識、理解,同時,利用數軸又可以把這些概念串在一起。有理數的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。
基礎知識:
1、正數(position number):大于0的數叫做正數。
2、負數(negation number):在正數前面加上負號“-”的數叫做負數。
3、0既不是正數也不是負數。
4、有理數(rational number):正整數、負整數、0、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。
5、數軸(number axis):通常,用一條直線上的點表示數,這條直線叫做數軸。
數軸滿足以下要求:
(1) 在直線上任取一個點表示數0,這個點叫做原點(origin);
(2) 通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;
(3) 選取適當的長度為單位長度。
6、相反數(opposite number):絕對值相等,只有負號不同的兩個數叫做互為相反數。
7、絕對值(absolute value)一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。記做|a|。
由絕對值的定義可得:|a-b|表示數軸上a點到b點的距離。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.
正數大于0,0大于負數,正數大于負數;兩個負數,絕對值大的反而小。
8、有理數加法法則
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0.
(3)一個數同0相加,仍得這個數。
加法交換律:有理數的加法中,兩個數相加,交換加數的位置,和不變。表達式:a+b=b+a。
加法結合律:有理數的加法中,三個數相加,先把前兩個數相加或者先把后兩個數相加,和不變。
表達式:(a+b)+c=a+(b+c)
9、有理數減法法則
減去一個數,等于加這個數的相反數。表達式:a-b=a+(-b)
10、有理數乘法法則
兩數相乘,同號得正,異號得負,并把絕對值相乘。
任何數同0相乘,都得0.
乘法交換律:一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等。表達式:ab=ba
乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。表達式:(ab)c=a(bc)
乘法分配律:一般地,一個數同兩個的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
表達式:a(b+c)=ab+ac
11、倒數
1除以一個數(零除外)的商,叫做這個數的倒數。如果兩個數互為倒數,那么這兩個數的積等于1。
12、有理數除法法則:兩數相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數,都得0.
13、有理數的乘方:求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(base number),n叫做指數(exponent)。
根據有理數的乘法法則可以得出:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。
14、有理數的混合運算順序
(1)“先乘方,再乘除,最后加減”的順序進行;
(2)同級運算,從左到右進行;
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
15、科學技術法:把一個大于10的數表示成a﹡10n的形式(其中a是整數數位只有一位的數(即0<a<10),n是正整數)。
16、近似數(approximate number):
17、有理數可以寫成m/n(m、n是整數,n≠0)的形式。另一方面,形如m/n(m、n是整數,n≠0)的數都是有理數。所以有理數可以用m/n(m、n是整數,n≠0)表示。
人教版初一數學復習資料二
第二章 整式的加減總復習
【知識點定義】
1、單項式
對數字和若干個字母施行有限次乘法運算,所得的代數式叫做單項式.單獨一個數或一個字母也是單項式.
2、系數
單項式中的數字因數叫做這個單項式的系數.
3、單項式的次數
一個單項式中,所有字母的指數的和叫做這個單項式的次數.
4、多項式
幾個單項式的和叫做多項式.
5、多項式的項
在多項式中,每個單項式叫做多項式的項.
-6是常數項.
6、常數項
多項式中,不含字母的項叫做常數項.
7、多項式的次數
多項式里,次數最高的項的次數,就是這個多項式的次數.
8、降冪排列
把一個多項式,按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列.
9、升冪排列
把一個多項式,按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列.
10、整式
單項式和多項式統(tǒng)稱整式。
11、同類項
所含字母相同,并且相同字母的次數也相同的項,叫做同類項.常數項都是同類項.
12、合并同類項
把多項式中的同類項合并成一項,叫做合并同類項.
合并同類項的法則是:
同類項的系數相加,所得的結果作為系數,字母和字母的指數不變.
13、去括號法則
括號前是“+”號,把括號和它前面的“+”號去掉,括號里各項都不變符號;
括號前是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號.
例:a+(b-2c)-(e-2d)=a+b-2c-e+2d
14、添括號法則
添括號后,括號前面是“+”號,括到括號里的各項都不變符號;
添括號后,括號前面是“-”號,括到括號里的各項都改變符號.
例:m+2x-y+z-5=m+(2x-y)-(-z+5)
15、整式的加減
整式加減的一般步驟:
1.如果遇到括號,按去括號法則先去括號;
2.合并同類項.
16、代數式的恒等變形一個代數式用另一個與它恒等的表達式去代換,叫做恒等變形.
人教版初一數學復習資料三
第三章《一元一次方程》綜合復習指導
【知識點歸納】
一、方程的有關概念
1.方程:含有未知數的等式就叫做方程.
2. 一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論.
二、等式的性質
等式的性質(1):等式兩邊都加上(或減去)同個數(或式子),結果仍相等.用式子形式表示為:如果a=b,那么a±c=b±c
(2)等式的性質(2):等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么=
三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項.
四、去括號法則
1. 括號外的因數是正數,去括號后各項的符號與原括號內相應各項的符號相同.
2. 括號外的因數是負數,去括號后各項的符號與原括號內相應各項的符號改變.
五、解方程的一般步驟
1、 去分母(方程兩邊同乘各分母的最小公倍數)
2、去括號(按去括號法則和分配律)
3、 移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4、合并(把方程化成ax = b (a≠0)形式)
5. 系數化為1(在方程兩邊都除以未知數的系數a,得到方程的解x=).
六、用方程思想解決實際問題的一般步驟
1、 審:審題,分析題中已知什么,求什么,明確各數量之間的關系.
2.、設:設未知數(可分直接設法,間接設法)
3、 列:根據題意列方程.
4、 解:解出所列方程.
5、 檢:檢驗所求的解是否符合題意.
6、 答:寫出答案(有單位要注明答案)
七、有關常用應用類型題及各量之間的關系
1、 和、差、倍、分問題:
(1)倍數關系:通過關鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現.
(2)多少關系:通過關鍵詞語“多、少、和、差、不足、剩余……”來體現.
2、 等積變形問題:
“等積變形”是以形狀改變而體積不變?yōu)榍疤?常用等量關系為:
①形狀面積變了,周長沒變;
?、谠象w積=成品體積.
3、勞力調配問題:
這類問題要搞清人數的變化,常見題型有:
(1)既有調入又有調出;
(2)只有調入沒有調出,調入部分變化,其余不變;
(3)只有調出沒有調入,調出部分變化,其余不變
4、 數字問題
(1)要搞清楚數的表示方法:一個三位數的百位數字為a,十位數字是b,個位數字為c(其中a、b、c均為整數,且1≤a≤9, 0≤b≤9, 0≤c≤9)則這個三位數表示為:100a+10b+c.
(2)數字問題中一些表示:兩個連續(xù)整數之間的關系,較大的比較小的大1;偶數用2n表示,連續(xù)的偶數用2n+2或2n—2表示;奇數用2n+1或2n—1表示.
5、工程問題:
工程問題中的三個量及其關系為:工作總量=工作效率×工作時間
6、行程問題:
(1)行程問題中的三個基本量及其關系: 路程=速度×時間.
(2)基本類型有
?、?相遇問題;
② 追及問題;常見的還有:相背而行;行船問題;環(huán)形跑道問題.
7、商品銷售問題
有關關系式:
商品利潤=商品售價—商品進價=商品標價×折扣率—商品進價
商品利潤率=商品利潤/商品進價
商品售價=商品標價×折扣率
8、儲蓄問題
?、?顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數,利息與本金的比叫做利率.利息的20%付利息稅
?、?利息=本金×利率×期數
本息和=本金+利息
利息稅=利息×稅率(20%)
猜你喜歡: