特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 知識大全 > 方法百科 > 讀書技巧 > 高三數(shù)學(xué)函數(shù)解題方法方法

高三數(shù)學(xué)函數(shù)解題方法方法

時(shí)間: 虹靜960 分享

高三數(shù)學(xué)函數(shù)解題方法方法

  什么是高三數(shù)學(xué)函數(shù)解題方法? 今天小編為大家推薦高三數(shù)學(xué)函數(shù)解題方法,希望大家在學(xué)習(xí)的路上越來越好。

  高三數(shù)學(xué)函數(shù)解題方法是什么

  一.觀察法

  通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域。

  例1求函數(shù)y=3+√(2-3x)的值域。

  點(diǎn)撥:根據(jù)算術(shù)平方根的性質(zhì),先求出√(2-3x)的值域。

  解:由算術(shù)平方根的性質(zhì),知√(2-3x)≥0,

  故3+√(2-3x)≥3。

  ∴函數(shù)的知域?yàn)?

  點(diǎn)評:算術(shù)平方根具有雙重非負(fù)性,即:(1)被開方數(shù)的非負(fù)性,(2)值的非負(fù)性。

  本題通過直接觀察算術(shù)平方根的性質(zhì)而獲解,這種方法對于一類函數(shù)的值域的求法,簡捷明了,不失為一種巧法。

  練習(xí):求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域?yàn)椋簕0,1,2,3,4,5})

  二.反函數(shù)法

  當(dāng)函數(shù)的反函數(shù)存在時(shí),則其反函數(shù)的定義域就是原函數(shù)的值域。

  例2求函數(shù)y=(x+1)/(x+2)的值域。

  點(diǎn)撥:先求出原函數(shù)的反函數(shù),再求出其定義域。

  解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(1-2y)/(y-1),其定義域?yàn)閥≠1的實(shí)數(shù),故函數(shù)y的值域?yàn)閧y∣y≠1,y∈R}。

  點(diǎn)評:利用反函數(shù)法求原函數(shù)的定義域的前提條件是原函數(shù)存在反函數(shù)。這種方法體現(xiàn)逆向思維的思想,是數(shù)學(xué)解題的重要方法之一。

  練習(xí):求函數(shù)y=(10x+10-x)/(10x-10-x)的值域。(答案:函數(shù)的值域?yàn)閧y∣y<-1或y>1})

  三.配方法

  當(dāng)所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復(fù)合函數(shù)時(shí),可以利用配方法求函數(shù)值域

  例3:求函數(shù)y=√(-x2+x+2)的值域。

  點(diǎn)撥:將被開方數(shù)配方成平方數(shù),利用二次函數(shù)的值求。

  解:由-x2+x+2≥0,可知函數(shù)的定義域?yàn)閤∈[-1,2]。此時(shí)-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]

  ∴0≤√-x2+x+2≤3/2,函數(shù)的值域是[0,3/2]

  點(diǎn)評:求函數(shù)的值域不但要重視對應(yīng)關(guān)系的應(yīng)用,而且要特別注意定義域?qū)χ涤虻闹萍s作用。配方法是數(shù)學(xué)的一種重要的思想方法。

  練習(xí):求函數(shù)y=2x-5+√15-4x的值域.(答案:值域?yàn)閧y∣y≤3})

  四.判別式法

  若可化為關(guān)于某變量的二次方程的分式函數(shù)或無理函數(shù),可用判別式法求函數(shù)的值域。

  例4求函數(shù)y=(2x2-2x+3)/(x2-x+1)的值域。

  點(diǎn)撥:將原函數(shù)轉(zhuǎn)化為自變量的二次方程,應(yīng)用二次方程根的判別式,從而確定出原函數(shù)的值域。

  解:將上式化為(y-2)x2-(y-2)x+(y-3)=0(*)

  當(dāng)y≠2時(shí),由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2

  當(dāng)y=2時(shí),方程(*)無解。∴函數(shù)的值域?yàn)?

  點(diǎn)評:把函數(shù)關(guān)系化為二次方程F(x,y)=0,由于方程有實(shí)數(shù)解,故其判別式為非負(fù)數(shù),可求得函數(shù)的值域。常適應(yīng)于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函數(shù)。

  練習(xí):求函數(shù)y=1/(2x2-3x+1)的值域。(答案:值域?yàn)閥≤-8或y>0)。

  五.值法

  對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的較值,并與邊界值f(a).f(b)作比較,求出函數(shù)的值,可得到函數(shù)y的值域。

  例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。

  點(diǎn)撥:根據(jù)已知條件求出自變量x的取值范圍,將目標(biāo)函數(shù)消元、配方,可求出函數(shù)的值域。

  解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),

  ∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。

  當(dāng)x=-1時(shí),z=-5;當(dāng)x=3/2時(shí),z=15/4。

  ∴函數(shù)z的值域?yàn)閧z∣-5≤z≤15/4}。

  點(diǎn)評:本題是將函數(shù)的值域問題轉(zhuǎn)化為函數(shù)的值。對開區(qū)間,若存在值,也可通過求出值而獲得函數(shù)的值域。

  練習(xí):若√x為實(shí)數(shù),則函數(shù)y=x2+3x-5的值域?yàn)?)

  A.(-∞,+∞)B.[-7,+∞]C.[0,+∞)D.[-5,+∞)

  (答案:D)。

  六.圖象法

  通過觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域。

  例6求函數(shù)y=∣x+1∣+√(x-2)2的值域。

  點(diǎn)撥:根據(jù)值的意義,去掉符號后轉(zhuǎn)化為分段函數(shù),作出其圖象。

  解:原函數(shù)化為-2x+1(x≤1)

  y=3(-1

  2x-1(x>2)

  它的圖象如圖所示。

  顯然函數(shù)值y≥3,所以,函數(shù)值域[3,+∞]。

  點(diǎn)評:分段函數(shù)應(yīng)注意函數(shù)的端點(diǎn)。利用函數(shù)的圖象

  求函數(shù)的值域,體現(xiàn)數(shù)形結(jié)合的思想。是解決問題的重要方法。

  求函數(shù)值域的方法較多,還適應(yīng)通過不等式法、函數(shù)的單調(diào)性、換元法等方法求函數(shù)的值域。

  七.單調(diào)法

  利用函數(shù)在給定的區(qū)間上的單調(diào)遞增或單調(diào)遞減求值域。

  例1求函數(shù)y=4x-√1-3x(x≤1/3)的值域。

  點(diǎn)撥:由已知的函數(shù)是復(fù)合函數(shù),即g(x)=-√1-3x,y=f(x)+g(x),其定義域?yàn)閤≤1/3,在此區(qū)間內(nèi)分別討論函數(shù)的增減性,從而確定函數(shù)的值域。

  解:設(shè)f(x)=4x,g(x)=-√1-3x,(x≤1/3),易知它們在定義域內(nèi)為增函數(shù),從而y=f(x)+g(x)=4x-√1-3x

  在定義域?yàn)閤≤1/3上也為增函數(shù),而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函數(shù)值域?yàn)閧y|y≤4/3}。

  點(diǎn)評:利用單調(diào)性求函數(shù)的值域,是在函數(shù)給定的區(qū)間上,或求出函數(shù)隱含的區(qū)間,結(jié)合函數(shù)的增減性,求出其函數(shù)在區(qū)間端點(diǎn)的函數(shù)值,進(jìn)而可確定函數(shù)的值域。

  練習(xí):求函數(shù)y=3+√4-x的值域。(答案:{y|y≥3})

  八.換元法

  以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域。

  例2求函數(shù)y=x-3+√2x+1的值域。

  點(diǎn)撥:通過換元將原函數(shù)轉(zhuǎn)化為某個(gè)變量的二次函數(shù),利用二次函數(shù)的值,確定原函數(shù)的值域。

  解:設(shè)t=√2x+1(t≥0),則

  x=1/2(t2-1)。

  于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.

  所以,原函數(shù)的值域?yàn)閧y|y≥-7/2}。

  點(diǎn)評:將無理函數(shù)或二次型的函數(shù)轉(zhuǎn)化為二次函數(shù),通過求出二次函數(shù)的值,從而確定出原函數(shù)的值域。這種解題的方法體現(xiàn)換元、化歸的思想方法。它的應(yīng)用十分廣泛。

  練習(xí):求函數(shù)y=√x-1–x的值域。(答案:{y|y≤-3/4}

  高考數(shù)學(xué)五大主要解題思路

  高考數(shù)學(xué)解題思想一:函數(shù)與方程思想

  函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系(或構(gòu)造函數(shù))運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。

  高考數(shù)學(xué)解題思想二:數(shù)形結(jié)合思想

  中學(xué)數(shù)學(xué)研究的對象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們在解答數(shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。

  高考數(shù)學(xué)解題思想三:特殊與一般的思想

  用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋€(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),我們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。

  高考數(shù)學(xué)解題思想四:極限思想解題步驟

  極限思想解決問題的一般步驟為:(1)對于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;(2)確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。

  高考數(shù)學(xué)解題思想五:分類討論思想

  我們常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶ο蟀硕喾N情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
猜您感興趣:

1.高三數(shù)學(xué)函數(shù)例題及解析

2.2017高考數(shù)學(xué)答題技巧及方法

3.2016年高考數(shù)學(xué)復(fù)習(xí)利用函數(shù)圖像解題技巧

4.高三數(shù)學(xué)函數(shù)知識點(diǎn)復(fù)習(xí)

5.高一數(shù)學(xué)解題技巧口訣

6.高考數(shù)學(xué)大題解題方法

7.高三數(shù)學(xué)函數(shù)知識點(diǎn)梳理

8.高三數(shù)學(xué)理科復(fù)習(xí)方法

2684825