解數學題的方法
解數學題的方法
學會如何解題,是數學學習過程中必須完成的重要任務,雖然數學題看起來繁多復雜,事實上它的解題思路是有方法可循的。小編告訴各位學生們不用害怕數學題.
解數學題的策略
一、 熟悉化策略
常用的途徑有:
(一)、充分聯想回憶基本知識和題型:
按照波利亞的觀點,在解決問題之前,我們應充分聯想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結論,從而解決現有的問題。
(二)、全方位、多角度分析題意:
對于同一道數學題,常??梢圆煌膫让?、不同的角度去認識。因此,根據自己的知識和經驗,適時調整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。
(三)恰當構造輔助元素:
數學中,同一素材的題目,常常可以有不同的表現形式;條件與結論(或問題)之間,也存在著多種聯系方式。因此,恰當構造輔助元素,有助于改變題目的形式,溝通條件與結論(或條件與問題)的內在聯系,把陌生題轉化為熟悉題。
數學解題中,構造的輔助元素是多種多樣的,常見的有構造圖形(點、線、面、體),構造算法,構造多項式,構造方程(組),構造坐標系,構造數列,構造行列式,構造等價性命題,構造反例,構造數學模型等等。
二、簡單化策略
解題中,實施簡單化策略的途徑是多方面的,常用的有: 尋求中間環(huán)節(jié),分類考察討論,簡化已知條件,恰當分解結論等。
1、尋求中間環(huán)節(jié),挖掘隱含條件:
在些結構復雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經過適當組合抽去中間環(huán)節(jié)而構成的。
因此,從題目的因果關系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯系的系列題,是實現復雜問題簡單化的一條重要途徑。
2、分類考察討論:
在些數學題,解題的復雜性,主要在于它的條件、結論(或問題)包含多種不易識別的可能情形。對于這類問題,選擇恰當的分類標準,把原題分解成一組并列的簡單題,有助于實現復雜問題簡單化。
3、簡單化已知條件:
有些數學題,條件比較抽象、復雜,不太容易入手。這時,不妨簡化題中某些已知條件,甚至暫時撇開不顧,先考慮一個簡化問題。這樣簡單化了的問題,對于解答原題,常常能起到穿針引線的作用。
4、恰當分解結論:
有些問題,解題的主要困難,來自結論的抽象概括,難以直接和條件聯系起來,這時,不妨猜想一下,能否把結論分解為幾個比較簡單的部分,以便各個擊破,解出原題。
三、直觀化策略:
所謂直觀化策略,就是當我們面臨的是一道內容抽象,不易捉摸的題目時,要設法把它轉化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對象之間的聯系,找到原題的解題思路。
(一)、圖表直觀:
有些數學題,內容抽象,關系復雜,給理解題意增添了困難,常常會由于題目的抽象性和復雜性,使正常的思維難以進行到底。
對于這類題目,借助圖表直觀,利用示意圖或表格分析題意,有助于抽象內容形象化,復雜關系條理化,使思維有相對具體的依托,便于深入思考,發(fā)現解題線索。
(二)、圖形直觀:
有些涉及數量關系的題目,用代數方法求解,道路崎嶇曲折,計算量偏大。這時,不妨借助圖形直觀,給題中有關數量以恰當的幾何分析,拓寬解題思路,找出簡捷、合理的解題途徑。
(三)、圖象直觀:
不少涉及數量關系的題目,與函數的圖象密切相關,靈活運用圖象的直觀性,常常能以簡馭繁,獲取簡便,巧妙的解法。
四、特殊化策略
所謂特殊化策略,就是當我們面臨的是一道難以入手的一般性題目時,要注意從一般退到特殊,先考察包含在一般情形里的某些比較簡單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發(fā)現解答原題的方向或途徑。
五、一般化策略
所謂一般化策略,就是當我們面臨的是一個計算比較復雜或內在聯系不甚明顯的特殊問題時,要設法把特殊問題一般化,找出一個能夠揭示事物本質屬性的一般情形的方法、技巧或結果,順利解出原題。
六、整體化策略
所謂整體化策略,就是當我們面臨的是一道按常規(guī)思路進行局部處理難以奏效或計算冗繁的題目時,要適時調整視角,把問題作為一個有機整體,從整體入手,對整體結構進行全面、深刻的分析和改造,以便從整體特性的研究中,找到解決問題的途徑和辦法。
七、間接化策略
所謂間接化策略,就是當我們面臨的是一道從正面入手復雜繁難,或在特定場合甚至找不到解題依據的題目時,要隨時改變思維方向,從結論(或問題)的反面進行思考,以便化難為易解出原題。
解數學題的方法
審題
判斷問題的類型,找出問題的數學核心。拿到一個數學問題,首先要判斷它屬于哪一類問題?是函數問題,方程問題還是概率問題。它問的實質是什么?是證明,化簡還是求值。只有這些大方向判斷正確了,在解題時才能應付自如。
篩選一些基本原則
審題結束后,在自己的腦海里要會議一下所學過的解題的基本原則,再根據題目進行選擇,選擇一個自己認為最簡單的原則進行解題。常見的原則有:
(1)模型化原則。把一個問題進一步抽象概括成一個數學模型。
(2)簡單化原則。就是把一個復雜的問題拆成幾個簡單的問題,在進行解題。
(3)等價變換原則。(也即劃歸方法)把一個未解決的問題化成一個已知的情形,保持問題的性質不變。
(4)數形結合原則。把數學問題和幾何問題巧妙的結合起來解題。
選擇適當的做題技巧。
包括因式分解、配方法、待定系數法、換元法、消元法,不等式的放大縮小法以及例舉法等等。這些方法要根據題目的要求不同靈活應用。
認真檢查
做完題后一定要養(yǎng)成檢查的好習慣,這樣才能保證自己做題的正確率。